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Abstract

We investigate the role of knowledge spillovers in determining firms’ incentives to invest in

exploratory versus incremental R&D. We link drug candidates to molecularly similar drugs that

are developed in the future and show that novel drug candidates generate greater knowledge

spillovers: they are more likely to inspire the development of subsequent successful drugs than

incremental candidates. Building on this empirical finding, we develop a model of R&D in which

firms face a trade-off: incremental drug candidates are easier to evaluate because they are based

on more established science, while novel drugs present more opportunities for future learning.

We provide empirical evidence that firms place less value on learning and are, therefore, reluctant

to develop novel drugs. We provide additional evidence that firms are more willing to engage

in exploration when they expect to appropriate a greater fraction of spillover knowledge, when

they expect drugs to generate many follow on innovations, and when they face lower discount

rates.
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Scientific breakthroughs often build on earlier research efforts, including those that initially

end in failure.1 Yet, the extent to which firms incorporate learning spillovers into their R&D

decisions remains unclear. While academic research consistently emphasizes the importance of

exploration for innovation (Romer, 1990; Aghion and Howitt, 1992; Scotchmer, 1991; Furman and

Stern, 2011), standard project evaluation metrics such as net present value (NPV) often focus only

on direct commercial success. This divergence raises questions about how firms actually weigh

learning opportunities against more tangible outcomes.

In this paper, we investigate the practical importance of two key factors in R&D decision-making:

evaluation, the ability to identify promising projects, and learning, the ability to gain knowledge

that improves future evaluation decisions. Our empirical focus is pharmaceutical R&D, a setting

where breakthrough innovations can lead to enormous gains in welfare, where cumulative learning

is important, and where failure is common.

We first develop a novel measure that tracks drug development efforts over time by linking

drug candidates to subsequent candidates that are molecularly related. This allows us to identify

how drug candidates inspire the development of future drugs. Using this measure, we show that

novel drug candidates generate valuable knowledge spillovers, and that a significant fraction of these

spillovers comes from drug candidates that fail. We then use these facts to motivate a model of

R&D investments. In our model, a firm decides whether to invest in developing a drug candidate,

which can either be incremental or novel. Firms are better able to evaluate the likelihood of success

of incremental drugs because they are related to ideas that have previously been investigated. In

contrast, firms know less about novel drugs, but by investigating a new area, they learn about the

success of future related drugs. Using this model as a guide, we provide empirical evidence that

firms prioritize investments in incremental drugs, which are easier to evaluate. We provide further

evidence that firms undervalue novel R&D compared to incremental because the former creates

knowledge spillovers that are more difficult to appropriate.

Our measure of knowledge spillovers builds on Krieger et al. (2021). Following their work, we

measure a drug candidate’s novelty by comparing its molecular structure with that of previously

developed candidates. In this paper, we complement these backward-looking molecular linkages by

introducing a measure of spillover value based on a drug candidate’s chemical similarity to subse-

quent drug candidates. Specifically, we identify a drug candidate’s “successors” as the future drug

candidates that are molecularly similar to the focal drug, but not to any earlier drugs. We then

characterize a drug’s “successor revenue” as the total revenue of its successors. This methodology
1The development of COVID-19 mRNA vaccines illustrates this principle. In 2013, researchers halted a promising

HIV vaccine trial (DNA/rAd5) due to lack of efficacy. The vaccine attempted to prime the immune system using
DNA plasmids that encoded HIV protein structures. However, post-trial analysis revealed a critical limitation: DNA
plasmids were frequently degraded before reaching cell nuclei, where they needed to deliver their genetic instructions.
This setback pointed researchers toward two crucial innovations: mRNA-based vaccines (which only need to reach
a cell’s cytoplasm) and protective delivery mechanisms. Both advances were later incorporated into Moderna and
Pfizer-BioNTech’s successful SARS-CoV-2 vaccines, which use lipid nanoparticles to deliver mRNA (Harris, 2021).
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allows us to calculate spillover value for all drug candidates, including the vast majority that never

reach regulatory approval. Our results indicate that drug candidates regularly inspire the develop-

ment of successor drugs, and that the majority of successor revenues accrue to failed focal drugs.

This is, to our knowledge, the first direct estimate of the revenue generated by failed projects in

any industry.2

We use this measure of the value of knowledge spillovers to generate a key stylized fact: novel

drug candidates generate more successor revenues than incremental drug candidates, despite being

significantly less likely to reach the market. That is, novel drugs are more likely to fail at the outset

but appear to open up more paths for follow-on research, leading to more commercially successful

drugs in the future. The benefits of investing in novel drugs are therefore more backloaded. As a

result, project metrics that ignore spillovers will tend to disproportionately understate the value of

novel drugs.

Motivated by this insight, we propose a model of R&D investment in which firms only partially

internalize the value of knowledge spillovers from exploratory research. Our model highlights a

key tradeoff firms face: incremental drugs are easier to evaluate because they are based on better-

understood science, which lowers the risk of investing in non-viable projects. However, investing in

novel drugs generates new scientific knowledge that enables firms to learn more about the viability

of future related innovations.

In the first period of the model, a firm is presented with a novel or an incremental drug candidate.

The firm is initially uncertain both about whether the drug will reach regulatory approval, and what

its revenues would be if approved. We assume that incremental drugs are based on more established

science: if a drug is incremental, then the firm observes an initial signal of its probability of success.

Based on this information, the firm is able to screen out some incremental projects that are likely

to fail at the outset. For candidates that pass this initial screen, the firm then learns about the

drug’s expected revenues if successful, and decides whether to begin a sequence of costly investments

to develop the drug. After the last stage of development, the firm receives revenue if this drug is

brought to market.

In the second period, either the original firm or another firm may have the opportunity to

invest in drug candidates that are related to the focal drug from the first period. If the drug

considered in the first period was incremental, or if it was novel but the firm chose not to invest in

development, then no additional knowledge was gained and the second period is essentially identical

to the first. However, if a novel drug was developed in the first period, then the second period firm
2Prior work in the management literature has sought to examine how organizations learn from failures (for a review

of this literature, see Desai et al. (2020)). For example, studies have asked how airlines, railroad companies, and
NASA have altered their performance and safety records following accidents and wrecks (Haunschild and Sullivan,
2002; Baum and Dahlin, 2007; Madsen and Desai, 2010). However, empirical challenges usually prevent researchers
from reliably attributing learning benefits to specific failures (Bennett and Snyder, 2017). Closer to our setting,
Magazzini et al. (2012) and Chiou et al. (2016) find that patents associated with successful drugs are cited more often
than those associated with failed drugs.
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obtains an additional signal about the viability of related drugs. Put differently, investing in a novel

project today renders future related projects incremental. This information is generated regardless

of whether the original idea was successful, and can be observed by other firms in the market.

Importantly, our model illustrates how novel and incremental projects are differentiated by the

amount of information firms possess, which is the dynamic consequence of firms’ past decisions,

rather than by any inherent differences in risk. A project is incremental only to the extent that

some firm has chosen to invest in a related project in the past. If this prior investment had not

occurred, then the drug candidate in question today would be novel.

Our model delivers an empirical diagnostic for assessing the relative value that firms place on

better evaluation of incremental drugs versus future learning from novel drugs. In particular, when

the private value of learning is high, firms are willing to develop novel drugs even when their

direct revenues are expected to be lower than those of incremental drugs. If this is the case, then

novel drugs should be more likely to enter development than incremental drugs, and have lower

revenue if approved (reflecting a lower revenue threshold for developing these drugs). By contrast,

when evaluation is relatively more important, firms are less likely to develop novel drugs, and their

revenues on approval will be higher. Crucially, this diagnostic allows us to infer the value of spillover

learning using only quantities that are observable in our data: the development rate of novel and

incremental drugs and their revenues conditional on approval.

We provide evidence consistent with the view that firms prioritize evaluation over learning.

Comparing pre-clinical candidates that are assessed in the same year for the same disease condition,

we find that firms are substantially less willing to invest in further developing more novel drug

candidates, i.e., bringing them into human clinical trials. At the same time, among the set of drugs

that eventually receive regulatory approval, novel drugs generate substantially more direct revenue

than incremental drugs. These results suggest that firms are more selective in developing novel

drugs, favoring incremental drugs instead.

In the last part of the paper, we explore several reasons why firms may be reluctant to develop

novel drugs. In particular, our model identifies three key factors that increase the value of learning.

We predict that a firm is more willing to invest in novel drugs when 1) its likelihood of appropriating

revenues from successor drug candidates is greater; 2) it expects investments to yield more follow

on opportunities; and 3) the firm’s discount rate is low. We find evidence consistent with each of

these predictions. Firms appear more selective in developing novel drugs in therapeutic areas where

competitor research activity is high (and therefore appropriability concerns are greater): fewer novel

drugs enter development, and those that are approved generate more revenue. In therapeutic areas

where focal drugs tend to yield more follow-ons, we find the opposite pattern: more novel drugs

enter development and their revenues on approval are lower. Finally, using firm-specific measures of

discount rates from Gormsen and Huber (2023), we show that firms which apply a greater discount

to the future are also more selective when investing in novel drugs. Taken together, these results are
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consistent with the idea that firms trade off the benefits of evaluation and learning when making

R&D investments.

Our paper highlights, both theoretically and empirically, a dynamic channel through which the

choice to “explore or exploit” today impacts the knowledge available to all firms in the future. We

provide a unified explanation for three key facts: a) novel drugs generate more successor revenue; b)

firms are less likely to bring novel drugs into development, but these drugs generate more revenue

conditional on approval; and c) this tendency is exacerbated by more competition, fewer follow-on

opportunities, and a higher discount rate. While we recognize that these findings can be explained

by a combination of other factors, our goal is to highlight the explanatory power the simple tension

between evaluation in the present and learning the future.

Finally, our analysis also generates another insight, which is that the observed risk and returns

associated with novel and incremental drugs are shaped by—and therefore potentially diagnostic

of—firms’ R&D priorities. Rather than viewing any novel drug candidates as inherently “high risk,

high reward,” we demonstrate how this notion can emerge endogenously from how firms trade off

being able to evaluate projects versus learn from them. Perhaps counter-intuitively, our model

shows that higher direct revenues for novel drugs is actually evidence that firms place less value

on learning—otherwise firms would have been willing to invest in novel drugs with lower expected

revenues. This result echoes arguments from the labor discrimination literature: if minorities are

subject to increased scrutiny in the hiring process then, among those who are hired, minorities

should outperform.

Our analysis connects several strands of research. First, we extend a rich literature on cumulative

innovation. Existing work in this area has developed new ways of tracing knowledge flows across

academic and private sector while focusing on how disclosure mechanisms, intellectual property, and

funding shape the rate and direction of follow-on innovation (Furman and Stern, 2011; Murray and

Stern, 2007; Williams, 2013; Murray et al., 2016; Sampat and Williams, 2019; Azoulay et al., 2018).

Our paper complements this literature by exploring a new set of questions linking the anticipated

value of follow-on innovation to the initial decision of whether to engage in exploration. Prior

studies of the economics of drug development have focused on how broader or longer intellectual

property rights affect incentives for follow-on entry into a drug class (Gilchrist, 2016; Gaessler

and Wagner, 2022; Wagner et al., 2022). The findings in this paper reinforce the importance of

appropriability rights in R&D investments, while introducing a new channel—the ability to capture

the future learning associated with both successful and failed projects—by which those rights shape

the composition of drug development Methodologically, we contribute a new measure of knowledge

spillovers that is based on a product’s inherent physical properties, rather than on socially contingent

patent citations.

Second, our work expands on the factors governing the decision to explore or exploit. In a bandit

model, agents must choose between actions with uncertain payoff distributions and alternatives
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with known outcome parameters (Slivkins et al., 2019). A typical assumption in these models, as in

Keller et al. (2005), is that the payoffs of these technologies are independent. In drug development,

however, this assumption does not apply: investing in a new drug reveals information about other

similar drugs. In this way, our model endogenizes the information that firms have about the projects

they consider. This makes our setting closer to the Brownian policy model of Callander (2011) and

related papers such as Garfagnini and Strulovici (2016), Callander and Matouschek (2019), and

Callander et al. (2022).

Our work also relates to the literature on competition and innovation. The idea that when

firms do not fully appropriate the knowledge spillovers from their R&D investments then there

will be underinvestment in research is not new (Romer, 1990). However, in addition to providing

direct empirical evidence that this is indeed the case, our work also reveals a novel link between

firms’ research decisions and the degree of competition. In canonical models such as Dixit and

Stiglitz (1977); Aghion et al. (2005), firms’ incentives to invest in novel R&D are shaped by product

market competition for the focal innovation, which reduces direct revenues. Our model considers a

complementary dynamic mechanism: competition reduces firms’ ability to appropriate the value of

future learning from the most novel R&D.

Finally, our work contributes to a growing literature highlighting the value of tolerating (or even

embracing) failure in order to achieve innovative outcomes (Aghion and Tirole, 1994; Azoulay et

al., 2011a; Tian and Wang, 2011; Hvide and Panos, 2014; Krieger, 2021). Using a novel measure of

follow-on innovation, we provide concrete empirical evidence that failed projects generate substantial

spillover knowledge.

1 Setting and Data

1.1 Institutional Background

The drug development process is typically divided into three stages: discovery, pre-clinical research,

and human clinical trials. In the discovery stage, firms consider potential compounds, many of

which may only exist as a concept. Firms may then create computer models of how a particular

compound is predicted to behave, or they may synthesize the compound and examine whether it

has any effect on the biological target of interest. At the end of the discovery stage, firms apply

for patents on promising candidates. In the pre-clinical stage, researchers focus on understanding

how the drug impacts the body (pharmacodynamics) and, in turn, how the body impacts the drug

(pharmacokinetics). These tests are conducted in test tube cell cultures and in animal models.

Finally, if a drug performs well in pre-clinical testing, firms may choose to develop the drug and

file an application to begin human clinical trials. Clinical trials have three phases. Phase 1 clinical

trials focus primarily on establishing a drug’s safety, usually in a healthy population; Phase 2 trials
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provide preliminary information on a drug’s efficacy among patients; and Phase 3 trials are large

trials that become the basis of a regulator’s decision as to whether or not to approve the drug.

Successful drug development can be quite lucrative. Recent estimates from Aryal et al. (2023)

report a mean expected value for approved drugs of $1.63 billion. However, investments in drug

development are expensive and risky: DiMasi et al. (2016) estimate that the direct cost of developing

a single approved drug is over $1.4 billion.3 This cost is spread unevenly across the stages of

drug development, with clinical (that is, Phase 1 and beyond) trials accounting for the bulk of

development expenses. In addition, failure is common, with over 90% of drugs entering clinical

trials never making it to market (DiMasi et al., 2016).

When firms develop a drug, they learn about a variety of issues—efficacy against disease, toxicity

at different levels of dosing, unintended and “off target” benefits and side effects, interactions with

other drugs, and differences in drug metabolism across patient groups—that are also informative

about how related drugs will function. And because pharmaceutical firms disclose their research

via scientific articles, patents, and other mandated filings, much of this information is accessible to

other firms. Indeed, in a cross-industry study, Qiu and Wan (2015) show that pharmaceutical firms

rank at the top in terms of generating and benefiting from knowledge spillovers.

Anecdotally, pharmaceutical firms routinely build on insights obtained from failed projects.

For example, the first cholesterol-reducing statin drug tested in animals was compactin, developed

by the Japanese firm Sankyo in the late 1970s (Endo, 2010a). While compactin was found to

reduce cholesterol in animals, its development was discontinued because of adverse effects. Merck,

however, remained inspired by the drug’s potential and worked to develop its own chemical analog

to compactin. That compound, lovastatin (Mevacor), went on to be the first approved statin in

1987. Lovastatin then paved the way for a series of chemically similar statins, including Merck’s

simvastatin (Zocor) and Pfizer’s atorvastatin (Lipitor).

1.2 Data and Sample

Our sample of drug candidates comes from Clarivate Analytics’ Cortellis Investigational Drugs

database (Cortellis), a business-intelligence database that focuses on tracking the progression of

candidates from pre-clinical investigation, to clinical development, to approval.

Drugs enter Cortellis when they appear in public documents such as patent filings or shareholder

reports. Because patents are typically taken out at the end of the discovery stage, we observe most

drugs in pre-clinical investigation, but not in the earlier discovery stage.4 We think of these pre-
3The authors in fact estimate combined direct and indirect costs of $2.6 billion, but others have ar-

gued that these numbers are too high. See, for instance, http://www.nytimes.com/2014/11/19/upshot/
calculating-the-real-costs-of-developing-a-new-drug.html.

4Drugs in the discovery stage of research are often too nascent to be observable by Cortellis. In many cases, they
have not yet been named, do not yet have publicly disclosed patent applications, and may not even be generally
known within the firm that is developing them (Hughes et al., 2011). We note that Cortellis’s coverage for drugs in
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clinical candidates as a sample of “potential projects,” which we observe regardless of whether a

firm ultimately develops them further.

We obtain information on revenues for approved drugs from Evaluate Pharma, a commercial

provider of drug sales data. We use a combination of exact matching, fuzzy matching, and manual

confirmation to match Evaluate data to Cortellis, relying on drug name and company sponsor. Our

data allow us to observe year-by-year sales associated with marketed drugs. This revenue data

is necessarily censored: we observe only sales that have occurred, not the full stream of lifetime

revenues. Because drugs that have been marketed for a longer period of time will naturally have

greater total sales, we focus on a drug’s average annual revenue for the years in which it appears in

our sample.

In summary, we are able to track individual drug candidates from preclinical development on-

ward. For each candidate, we observe whether it is developed (e.g., enters clinical trials), whether

it is approved, and its revenues conditional on approval.

We make two types of sample restrictions throughout our analysis. Because our measures of

novelty and follow-on activity are based on analyses of chemical similarity that only work for so-

called “small molecule” drugs, we restrict our analysis to the 80% of drugs in our data that fit this

criterion. Our analysis therefore excludes biologic drug candidates such as monoclonal antibodies

and vaccines. We also restrict our sample to drug candidates investigated in the United States,

where our data coverage is more complete. Panel A of Table 1 shows that our main sample consists

of 17,630 pre-clinical drug candidates, 7,938 of which we observe in human clinical trials, and 1,379

of which reach FDA approval. These drugs represent research efforts by over 3,000 firms into 375

distinct lead disease areas (categorized by ICD-9 disease codes).

Finally, we supplement this main data with information on the discount rates that firms they

apply to their investment decisions. Our data come from Gormsen and Huber (2023), who infer

firms’ discount rates using textual analysis of firms’ quarterly earnings call transcripts. Gormsen

and Huber (2023) parse conference call transcripts for 22 keywords related to discount rates, then

manually evaluated the surrounding paragraphs for statements about the firm’s discount rate that

is applicable to their investment decisions. We are able to merge this information for a small subset

of our firms. The low overlap rate is due to the fact that Gormsen and Huber (2023) covers only a

subset of large public firms, while drug developers in our sample include many smaller public firms,

as well as foreign-listed and private firms.

pre-clinical trials may be incomplete, especially for drugs in the earliest stages of investigation: the subset that we
observe should be thought of as relatively serious contenders in pre-clinical development.
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1.3 Variable Construction

1.3.1 Drug novelty

We focus on a firm’s decision to engage in incremental versus exploratory innovation. To measure

this, we follow Krieger et al. (2021) and define an individual drug candidate’s novelty in terms of its

molecular distance from previously developed drugs. Our measure is based on a notion of molecular

similarity known as a “Tanimoto” score. Tanimoto scores are widely used in pharmaceutical chem-

istry to identify relatedness among molecular compounds. A score of 0 indicates that two molecules

do not share any common chemical substructures while a score of 1 indicates that the two molecules

are identical in their atoms and bonding, up to stereosymmetry.5

We compute pairwise similarity scores between an initial drug candidate i and all other drug

candidates j that entered human clinical trials prior to the focal candidate i’s earliest development

date. We define candidate i’s novelty as one minus its maximum pairwise Tanimoto score with prior

drugs j, Tij :

Noveltyi ” 1 ´ max
j prior to i

Tij . (1)

By this measure, drug candidates are novel if they have molecular differences from previously

developed drugs. In our sample, the mean (backwards-looking) novelty score is 0.48, with an

inter-quartile range of 0.36–0.65 (see Table 1, Panel B). For additional discussion and validation,

see Krieger et al. (2021).

1.3.2 Successor Drugs and Successor Revenues

To measure the spillover value of drug investments, we link drug candidates to subsequent drug

candidates. Specifically, we define a drug candidate j as a successor to a focal drug candidate i

if the following conditions are met: 1) the two drugs are molecularly similar, defined as having a

Tanimoto score greater than 0.75; 2) the successor drug j entered pre-clinical development after the

focal drug i entered Phase 1 clinical trials; and 3) drug i is the earliest molecularly similar drug to

drug j.

We note that our definition considers only successors that are distinct products, requiring their

own development and clinical testing prior to regulatory approval. This excludes generic entrants,

but includes closely related products such as extended release formulations or combination therapies.

Figure 1 presents an example of a focal and successor drug. Telapristone acetate (Proellex)

entered development for the treatment of uterine fibroids in 2004 but its clinical trial was put on

hold due to safety concerns. Despite never reaching the market, Proellex inspired five successor
5See Wawer et al. (2014), Bickerton et al. (2012), and Maggiora et al. (2014) for a discussion of Tanimoto scores

in chemistry. In economics, Krieger et al. (2021), validate this measure by showing that drugs that target the
same patient populations or share the same biological mechanism of action (MOA) have significantly higher average
similarity scores than pairs unrelated through disease or MOAs.

8



candidates. One of these candidates, ulipristal acetate (Ella), ultimately reached the market and

is currently is on the World Health Organization’s List of Essential Medicines. Ella is pictured

alongside Proellex in Figure 1: the two drugs have a Tanimoto score of 0.81.

Before continuing, we discuss each of the three conditions we use to identify successors.

The first condition ensures that we only consider successor drugs which are indeed molecularly

related to the focal drug. As can be seen from Figure 1, drugs with a Tanimoto score of greater

than 0.75 indicates a level of similarity that is apparent even to a layperson’s eye. The biochemistry

literature has shown that these similarities in molecular structure are tied in the to similarity in

function (Maggiora et al., 2014).

Second, we restrict to potential successors that are developed after the focal drug has entered

clinical trials. Because clinical trial reporting is mandated and public, this restriction ensures that

the structures of focal drugs were publicly known at the time a potential successor enters pre-clinical

development, reducing the possibly that we mistakenly credit a drug as being a success when in

fact it was simultaneously and independently developed. This means that our successor counts

are conservative and may miss some cases where a follow-on firm invests and enters quickly after

observing a pioneer’s early patenting or preclinical experimentation.

Third, we focus on a drug’s earliest molecular antecedent because a single drug often reveals

critical information about whether follow-on activity is worthwhile. If the pioneering drug inspires

many follow-on drugs, those successors will reach development at various times (sometimes concur-

rently), rather than each drug inspiring the next in sequence. This dynamic is similar to a single

“wildcat” oil well revealing a wealth of valuable information about drilling in a particular geography

(Covert and Sweeney, 2022).

Having defined the notion of a successor drug, we define successor revenue to a drug i as total

revenues across all of its successor drugs j:

Successor Revenuei ”
ÿ

j successor to i

Revenuej (2)

In Equation (2), Revenuej is the average annual revenue associated with successor drug j. Unsuc-

cessful successor drugs are included as having zero revenues.

Before continuing, we highlight several limitations. First, our data are truncated: more recently

developed drugs are less likely to be linked to successor drugs simply because they had less time

to generate successors. In addition, our measure of average annual revenues does not account for

differences in earnings over the lifecycle of a drug. More recently approved drugs will have annual

sales measured during a period the drug is on patent whereas older drugs will have some of their

revenue years come after the drug faces generic competition. As a result, our main analyses will

always control for development-year-quarter fixed effects, so that we are comparing drugs within
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the same cohort of development. Finally, we note that while we can measure revenue, we cannot

measure profitability because we do not observe information on costs.6

Despite these limitations, our approach to identifying successor drugs has several advantages

relative to patent-based measures of relatedness, e.g., based on citations or text. Foremost, our

measure is based on a concrete product characteristic, molecular structure, which uniquely deter-

mines a drug. Pharmaceutical patents, by contrast, represent a wide range of intellectual protections

(active ingredients, methods of delivery or manufacture) that cannot necessarily be cleanly asso-

ciated with a specific drug (Gupta, 2023).7 Second, our similarity measure is based on objective

chemical properties and does not rely on a patent examiner’s discretion in determining which cita-

tions are relevant. Lei and Wright (2017), for instance, questions the reliability of patent citations

as measures of intellectual relatedness by identifying many cases in which citations appear to be

unrelated to the original patent.8 Last, recent studies have also used patent-text based methods to

measure similarity (Kelly et al., 2021; Kuhn and Thompson, 2019). Text-based measures may miss

differences in design that are only be represented in schematics/diagrams or technical formulas, an

important consideration in the context of patents for chemical molecules.

2 Motivating Facts

Panel B of Table 1 describes the distributions for our measures of direct revenue, number of succes-

sors, and successor revenue. Unsurprisingly, given their early nature, we find that these measures

are all highly skewed, with the vast majority of pre-clinical drugs failing to eventually generate

either direct revenue or successor revenue. Panel B also reports the distribution of novelty scores in

our sample, where we see a greater variety of more and less novel drugs. We next document a set

of stylized facts regarding the spillovers from novel and incremental drug candidates.

2.1 Quantifying Spillovers

Panel A of Figure 2 plots the average number of successor candidates associated with focal drug

candidates, by the highest phase of development they reached. While successful drugs (those that

have been approved by the FDA) generate substantially more successors on average, failed drugs
6The majority of drug development costs are determined by the cost of clinical trials. Trial costs can vary

substantially based on the number of patients in a trial, how long the trial is run, and the difficulty of enrolling these
patients. These factors can vary greatly across disease types—trials for non-lethal cancers, for instance, require larger
sample sizes and longer trials to achieve statistical significance relative to trials for very lethal cancers—but tend to
be similar within disease type (our analysis will include disease level fixed effects).

7Even in the cases where it is possible to identify a drug’s active ingredient patent, these patents often cover
molecular classes that include tens of thousands of specific molecules, only one of which may represent the ingredient
in question.

8Consider patent 6,368,227 for “Method of swinging on a swing”, issued to Steven Olson (aged 5) on April 2002.
The patent has 20 patent citations as of 2022; it is cited, among others, by patent 8,420,782 for “Modular DNA-
binding domains and methods of use” and patent 8,586,526 for “DNA-binding proteins and uses thereof.” Many of
these citations were added by the patent examiner.
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(those that have not been approved) still generate follow-on activity.9 For example, the average

drug that does not make it past Phase 1 trials is linked to 0.1 successor drugs.

Panels B and C consider successor revenues. In Panel B, we find that the successors associated

with approved focal drugs generate a substantially higher amount of revenue, on average, compared

to failed focal drugs (almost $30 million per year versus about $6 million). Yet, because there are so

many more failed than successful drugs, the total value of spillovers generated by failed drugs is still

large. This point is illustrated in Panel C, where we present total successor revenues associated with

successful and failed focal drug candidates, aggregated across our sample. Total successor revenues

attributed to successful focal drugs is approximately $10 billion per year, whereas this figure is over

$16 billion among failed drugs. Due to their sheer number, failed drug candidates make up the

largest source of ideas that are linked to commercially successful follow-on innovation.

We note that a comparison of the raw differences in number of successors or successor revenues

among approved and non approved drugs is likely to understate spillovers to failed drugs. This is

because our definition of “failed” drugs includes both drugs that were abandoned during development

and those that are simply to developed too recently to have reached approval. These recent drugs

(which we may incorrectly classify as failed), will also have had less time to accrue successors or

successor revenues. In our analysis going forward, we will include drug development year-quarter

fixed effects to control for cohort-level differences in outcomes.

2.2 Novelty and Spillovers

Next, we consider how spillover value varies by drug novelty using the following specification:

Outcomei “ a0 ` a1Noveltyi ` δt ` δd ` εi (3)

Equation (3) is estimated at the drug level, and includes all candidates that enter human clinical

trials in the United States. The main explanatory variable of interest is Noveltyi which represents

a drug candidate’s molecular novelty (0 being molecularly identical to a prior drug candidate and 1

being completely novel). In our primary specifications, we include controls for cohort fixed effects

(development-year-quarter) δt as well as fixed effects δd for a drug candidate’s lead disease indication

(ICD-9).

Overall, we find that more novel drug candidates are associated with greater successor revenues.

Figure 3 plots the results and Table 2 presents the accompanying regression results. Panel A of

Figure 3 shows that more molecularly novel drug candidates generate more successor attempts.

Column 2 of Table 2 provides the accompanying magnitude: among drugs developed at the same
9Our use of the term “failed” is somewhat imprecise. Because our data do not always have termination dates, we

cannot always definitively identify whether a drug has failed, so this set of drugs should be thought of as those that
have either failed in development or ones whose ultimate outcome has not yet been realized. For brevity, we will use
the terms “not approved” and “failed” interchangeably, although the former is more accurate.
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time for the same condition, a one standard deviation (0.23) increase in a drug’s Tanimoto novelty

score is associated with 0.43 ˆ 0.23 “ 0.10 more successor drug candidates, or a 29% increase from

a baseline mean of 0.35.

Panel B of Figure 3 also shows that novel drugs generate more successor revenue. In terms

of magnitudes, Column 4 of Table 2 indicates that a one standard deviation increase in novelty

correlates with increased successor revenues of $9.7 ˆ 0.23 “ $2.2 million annually, a 32% increase

from a mean of $6.8 million.

Panels C and D provide additional context for these results. In Panel C, we plot the relationship

between a drug candidate’s novelty and its expected direct revenues (unsuccessful drugs are included

as having zero revenues). Here, we find that novel drugs tend to generate a similar amount of direct

revenue (the slope is positive but our estimates in Columns 5 and 6 of Table 2 lose significance in

some specifications). Panel D finally combines insights from Panels B and C to show that, among

novel drugs, successor revenue makes up a greater share of total attributed revenues (direct plus

successor). This result can be explained by the fact that novel drug candidates are substantially

more likely to fail in the development process, thereby generating no direct revenues. Given this,

successor revenues are a relatively more important part of the total value of novel drug candidates.

In Appendix Figure A.1, we show that these findings are robust to the inclusion of firm fixed effects.

This suggests that our findings are not exclusively driven by firm-level differences in their orientation

towards particular styles of R&D or new product entry.

2.3 Discussion

Our attribution method credits a successor drug candidate to its earliest derivative predecessor.

This approach raises the possibility that novel focal drugs may be more likely to be credited with

generating successors than focal incremental drugs—i.e., a highly incremental focal drug is less likely

to be the earliest molecularly similar predecessor of a successor drug because its own molecular

predecessor may claim this credit. Three important points are worth noting about these attribution

dynamics. First, pairwise similarity is not generally transitive, meaning that even drugs that are

molecularly incremental themselves can be linked to successors: an incremental drug’s predecessor

and its potential successor need not be pairwise similar to each other. In Figure 3, we do indeed

see that even highly incremental drugs are associated with successors.

Second, and more importantly, we view our definition as reflective of what it means to inspire

new research. As discussed in Section 1.3.2, it is often the case that a single novel drug inspires

a series of successors, rather than each successor successively inspiring the next one. For example,

the discovery of mevastatin by the pharmacuetical firm Sankyo in 1976 demonstrated that HMG-

CoA reductase inhibitors could effectively lower cholesterol levels, directly inspiring the parallel

development of lovastatin and simvastatin by its competitor Merck, as well as pravastatin, Sankyo’s
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own follow-on. Rather than each new statin building on its immediate predecessor, these drugs were

all developed in research programs that traced their inspiration back to mevastatin’s breakthrough

demonstration of this therapeutic mechanism (Endo, 2010b). Similarly, the discovery of fluoxetine

by Eli Lilly established selective serotonin reuptake inhibition as a viable treatment for depression,

inspiring the parallel development of other SSRIs like sertraline and paroxetine.

Third, it is also quite possible for novel drugs to generate few successors. The positive rela-

tionship between novelty and successor attempts that we document is far from obvious because

uncharted exploration may also simply be more useless. Highly novel drug candidates are less likely

to target diseases and (validated) biological mechanisms of action where competing developers are

already working Krieger (2020), e.g. those that are more scientifically and commercially viable. For

example, a low novelty or moderately novel new GLP-1 receptor agonist drug might be expected

to generate many successors because GLP-1’s have generated blockbuster profits in the treatment

of obesity and diabetes, and dozens of companies are developing new variants of GLP-1 targeting

drugs for the same diseases and new uses. With such clustered activity, one could reasonably expect

that a moderately novel GLP-1 drug would be more likely to generate successors, relative to a more

novel compound aimed at an unvalidated mechanism of action for diabetes. The positive linear

relationship we document is both non-obvious (a priori), and reveals that even marginal increases

in novelty may unlock greater cumulative innovation.

Finally, we present two additional empirical analyses to show that our descriptive findings in

Figure 3 are not an artifact of our measurement approach. In Appendix Figure A.2, we vary the

way we measure successor drugs to assign “partial credit” to all prior drugs that are similar to a

given drug candidate, rather than fully crediting the earliest candidate. In Appendix Table A.1, we

use alternative novelty measures that are not based on molecular similarity. Specifically, we define a

focal drug as novel if it either focuses on a new “target” (e.g., it attempts to impact a new biological

pathway such as a protein), or if it focuses on an existing target with a new mechanism of action

(e.g., if it is the first to seek to impact that target in a new way). In both these analyses, we find

that more novel drugs generate more successors and more successor revenue, and that a greater

share of their total revenue comes from spillover channels.

3 A model of drug development

Our empirical evidence suggests that novel projects generate more successor revenue than incre-

mental projects, and successor revenues comprise a greater share of the total revenues associated

with novel projects. Taken together, this suggests a potential trade off: firms may be less able to

evaluate the prospects of novel drugs, but the process of developing such drugs generates greater

opportunities for future learning. In this section, we build this tradeoff into a model of R&D.
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We present a two-period model with one firm and the rest of the market. In the first period,

the firm is given the opportunity to develop a drug, which can either be novel or incremental.

Incremental drugs are easier to screen: the firm is better able to predict which drugs will or will not

succeed. Firms know less about novel drugs, but developing them generates information about the

success of related drug candidates that this firm or the rest of the market may consider developing

in the second period. Essentially, we think of incremental drugs as ones that are related to—and

thus informed by—previously-developed novel drugs.

3.1 The model

There are two periods. Period 2 revenues and costs are discounted at factor β P p0, 1s relative to

period 1.

Period 1. In period 1, the firm considers whether to develop an initial drug. This drug has

novelty N P t0, 1u, with N “ 0 indicating an incremental drug and N “ 1 indicating a novel drug;

success if developed of S P t0, 1u; and expected revenue if successful of R. We assume that the

probability of success if developed is PrpS “ 1q “ π P p0, 1q and that revenue R is drawn according

to a distribution FR on R`, with the same distributions of success and revenue regardless of drug

novelty.10 (Unless otherwise specified, all random variables are taken to be independent of one

another.) The timeline of period 1 is then as follows.

Stage (i): Discovery.

(a) Awareness. The firm is made aware of the initial drug and observes whether the drug is

novel or incremental.

(b) Screening incremental drugs. If the drug is incremental, the firm observes a signal σ0

of whether the drug would be successful if developed. Specifically, drugs that would be

successful (S “ 1) always generate a good signal σ0 “ g. Drugs that would fail (S “ 0)

generate a bad signal σ0 “ b with probability q0 P p0, 1q and a good signal σ0 “ g with

probability 1´ q0. That is, if an incremental drug is low quality, the firm learns this fact

with probability q0.

If the drug is incremental and σ0 “ b, then the firm screens the drug out (P “ 0) and

the period is over. Otherwise—if σ0 “ g, or if the drug is novel—then the firm proceeds

to pre-clinical testing (P “ 1), Stage (ii).11

10We interpret R as the firm’s expected revenue, rather than the drug’s realized revenue, if the drug were to be
successfully developed. The role of this expectation is to account for the noise that we will observe when we bring this
model to data. In particular, in the data, there may be drugs that are successfully developed and yet yield negligible
revenue. In the model, these would be drugs whose realized revenue underperformed relative to expectations.

11An incremental drug with σ0
“ b does not enter pre-clinical testing because it will fail with certainty. Implicitly,

one can think of there as being a small cost of proceeding to the next stage.
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Stage (ii): Pre-clinical testing. The firm observes the drug’s revenue R. The firm then decides

whether to pay a cost C1 ą 0 to bring the drug into development (D1 “ 1), Stage (iii). If not

(D1 “ 0), the period is over.

Stage (iii): Development. Development proceeds in M ě 1 phases, corresponding to phases of

human clinical trials.

In each development phase t P t1, ...,M ´ 1u: The firm observes a signal σt of success S. If

S “ 1, the firm observes a good signal σt “ g with certainty. If S “ 0, the firm observes a

bad signal σt “ b with probability qt P p0, 1q and a good signal σt “ g with probability 1´ qt.

Then the firm decides whether to pay a cost Ct`1 ą 0 to bring the drug into phase t ` 1 of

development (Dt`1 “ 1). If not (Dt`1 “ 0), the period is over.12

In the final development phase t “ M : Success S is revealed. If S “ 1, the firm brings the

drug to market, Stage (iv). Otherwise the period is over.

Stage (iv): Market. The drug realizes revenue for the firm, equal in expectation to R.

Period 2. If the initial drug is incremental, then there is no second period decision. In this case

we normalize the firm’s second-period payoff to 0.

If the initial drug is novel, some number of related drugs may arrive. Each related drug j has

success if developed of Sj P t0, 1u and revenue if successful of Rj . Assume that PrpSj “ 1q “

π2 P p0, 1q and Rj „ F2R. If the initial drug was brought to development, i.e., if D1 “ 1, then

these related drugs are essentially rendered incremental, and we call them successor drugs. For each

related drug that arrives, the second period proceeds similarly to the first, where there will now be

additional information about successor drugs.

Stage (i): Discovery.

(a) Awareness. A non-negative number Q of related drugs arrives, with Q drawn from FQ

and having mean µQ ą 0. For each related drug j P t1, ..., Qu, either the focal firm

(Aj “ 1) or the rest of the market (Aj “ 0) is made aware of the drug, meaning that

this player has the exclusive opportunity to investigate and develop it. The probability

that the focal firm is made aware of any given related drug is PrpAj “ 1q “ α P p0, 1s.

(b) Screening successor drugs. If the initial drug was developed (D1 “ 1), then the player

who is made aware of successor drug j observes a signal σ0
j of Sj . Specifically, drugs that

would succeed (Sj “ 1) generate a good signal σ0
j “ g with certainty, while drugs that

would fail (Sj “ 0) generate a bad signal σ0
j “ b with probability q0 P p0, 1q and a good

signal σ0
j “ g with probability 1 ´ q0.

12If the drug does not make it to development phase t, then we take Dt`1
“ 0: the drug is also not brought to

development phase t ` 1.
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If drug j is a successor drug and σ0
j “ b, then the relevant player screens the drug out.

Otherwise—if σ0
j “ g, or if the initial drug was not developed—then the drug proceeds

to pre-clinical testing, Stage (ii).

Stages (ii) – (iv). These stages proceed exactly as in period 1, separately for each drug that enters

pre-clinical testing, for the player who is made aware of that drug.13

We assume that all parameters and distributions that were not specified to be drawn from a

distribution are commonly known at the start of the game: success probabilities π and π2, revenue

distributions FR and F2R, costs Ct, signal precision qt, the expected number of successor drugs µQ,

and the probability α that the firm has the opportunity to develop a given successor drug.

Putting all the payoffs together, the firm’s realized profit over the two periods can be written

out fully as

SDMR ´

˜

M
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DtCt

¸

looooooooooooomooooooooooooon
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˜
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If novel: Period-2 profit from related drugs

. (4)

The first expression is the direct term benefit of investing in the drug, which is the benefit captured

by a standard NPV calculation. If the firm is forward-looking (β ą 0) it should also take into

account the potential indirect benefits of its investment decisions.14

If the initial drug is novel, the rest of the market also realizes a payoff from developing related

drugs (those with Aj “ 0), given by

Nβ
ÿ

jPt1,...Qu

p1 ´ Ajq

˜

SjD
M
j Rj ´

˜

M
ÿ

t“1

Dt
jC

t

¸¸

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

If novel: Period-2 profit from related drugs

. (5)

As discussed below, after being made aware of a drug, the firm will develop that drug if its

revenue (R or Rj) is large enough. To guarantee that revenue can in fact be large enough so that a

drug is developed, assume that the support of the revenue distribution FR extends above
řM

t“1C
t{π,

and likewise the support of F2R extends above
řM

t“1C
t{π2.15 To guarantee that first-period revenue

can be low enough so that direct profits alone are not enough to justify development, assume that

the support of the revenue distribution FR extends below C1.
13For related drug j, we now replace R, S, Dt, and σt with Rj , Sj , Dt

j , and σt
j .

14Properly speaking, the direct revenue from the drug accrues over time and so the firm’s value of this will also
depend on discounting.

15In period 1, if a novel drug has R ą
řM

t“1 C
t
{π, then committing to pay the cost of all development phases in

advance would be more profitable in the first period than choosing not to develop the drug; an incremental drug with
a positive signal σ0

“ g would yield even higher profit. So for these drugs, the firm would choose D1
“ 1. Similarly

in the second period if Rj ą
řM

t“1 C
t
{π2, both for drugs following a developed and an undeveloped first-period novel

drug.
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3.2 Preliminary Analysis

We are primarily interested in the firm’s first-period decision to invest in developing the initial drug,

i.e., the choice of D1. Recall that this decision is taken after the firm has already screened out some

share of incremental drugs that would not have been successful (those with σ0 “ b), and after the

firm learns the expected revenue R for the drug.

To better understand this initial development decision, let us start by decomposing the firm’s

expected profit as a function of the choice of D1 as

D1 ¨ pV N
1 pRq ´ C1q ` β

`

WN
2 ` ND1µQα ¨ ∆N“1

2

˘

(6)

for some terms V N
1 pRq, WN

2 , and ∆N“1
2 . (See Appendix A.1 for the full expansion of each term,

along with a discussion of their properties.)16 The first term V N
1 pRq is the expected direct first-

period payoff of developing the drug (excluding the initial cost C1), which depends both on novelty

and revenue. The second term WN
2 is the portion of the firm’s second-period profit that doesn’t

depend on the first-period development decision. The third term ∆N“1
2 is then the amount that

second-period profit increases if a novel first-period drug is developed, for each related drug that

the firm sees.

The key tradeoff in the model is captured by the two observations.

First, the following inequality holds:

V N“0
1 pRq ´ V N“1

1 pRq ě 0 for every R. (7)

Equation (7) states that the firm has higher first-period profits from incremental drugs, for any

revenue level.17 This occurs because incremental drugs are easier to evaluate: the additional signal

the firm receives allows it to screen out a subset of weak candidates. This “evaluation benefit”

accrues entirely to the firm that makes the investment.

Second, we have:

∆N“1
2 ą 0. (8)

Equation (8) states that developing a novel drug gives a payoff bonus in the second-period. This

holds because the development of novel drugs today improves the evaluation of successor drugs in

the future. This benefits the firm in two distinct ways. First, by screening out successors that

generate bad initial signals, the firm avoids making costly investments in drugs that are likely to
16Importantly, none of the three terms depends on D1; the parameters β, µQ, and α do not appear in the decision-

relevant terms V N
1 pRq or ∆N“1

2 ; and expected revenue R does not appear in ∆N“1
2 . That is, all of the decision-relevant

dependence of expression (6) on D1, β, µQ, α, and R is made explicit.
17The inequality is strict when there is a positive value of developing incremental drugs, i.e., when V N“0

1 pRq ą 0.
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fail. Second, the remaining successors that the firm develops will be positively selected and bring

higher profits on average. However, unlike the direct evaluation benefit of developing incremental

drugs, this “learning benefit” of developing novel drugs is shared by the firm and the rest of the

market, both of whom may have the opportunity to develop successors.

Before proceeding, we add the following maintained assumption.

Assumption 1. The expected discounted increase in second-period profit from developing a novel

drug is less than the cost of bringing such a drug to development: βµQα∆
N“1
2 ă C1.

If this assumption were violated, the firm would get so much informational benefit from devel-

oping novel drugs that it would want to bring every novel drug into development—even if the drug

had low enough revenue that the firm planned on “pulling the plug” in phase 2 (setting D2 “ 0).

Imposing this assumption, the firm will only develop a novel drug that it plans on taking to market

if it continues to receive positive signals about the drug’s success.

3.3 Model implications

We can now describe the firm’s strategy in the first period of the game. For each type of drug N ,

incremental or novel, the firm will choose a revenue threshold R
N . Drugs of type N with expected

revenue R above the threshold R
N will be developed (D1 “ 1), and drugs with revenue below

the threshold will not be. Conditional on arriving at development phase t, the firm proceeds to

development phase t`1 (Dt`1 “ 1) if and only if it receives a positive signal (σt “ g). See Appendix

A.2 for a formalization.

Our model makes an unambiguous prediction that, conditional on having begun development,

incremental drugs are more likely to progress at every phase. (All proofs are in Appendix A.3.)

Proposition 3.1. The probability that a drug passes any given phase of development is higher for

incremental drugs. That is, for t P t1, ...,M ´ 1u, it holds that PrpDt`1 “ 1|Dt “ 1, N “ 0q ą

PrpDt`1 “ 1|Dt “ 1, N “ 1q. In addition, incremental drugs have a higher probability of success

conditional on reaching the final phase of development: PrpS “ 1|DM “ 1, N “ 0q ą PrpS “

1|DM “ 1, N “ 1q.

This result arises from the fact that incremental drugs begin with an informational advantage:

the firm screens out a subset of incremental drugs that generate a bad signal σ0 “ b at the discovery

stage. The remaining set of incremental drugs is positively selected to have a higher probability of

success. Hence, conditional on arriving at any phase t of development, incremental drugs are more

likely to receive a positive signal σt “ g, with the firm progressing to the next phase exactly when

it sees such a signal.

Proposition 3.1 establishes that incremental drugs are more likely to progress at each stage of

development. However, it is theoretically ambiguous whether incremental drugs are more likely
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to enter development in the first place. This occurs if the firm chooses to set a lower revenue

threshold for developing incremental drugs than for novel drugs (RN“0
ă R

N“1). R
N“0 may be

lower because the firm is able to screen out a subset of weak incremental candidates so that the

remaining candidates are safer bets. Alternatively, RN“1 may be lower because developing novel

drugs generates knowledge spillovers in addition to direct revenue.

Our model yields a diagnostic test for determining the relative thresholds for development. In

particular, we connect a firms’ thresholds for developing novel and incremental drugs to observable

quantities: the likelihood of development conditional on entering pre-clinical testing, and revenue

conditional on development.

Proposition 3.2. One of the following two cases obtains:18

1. High evaluation benefit. If RN“1
ě R

N“0, then novel drugs are less likely to be developed

conditional on entering pre-clinical testing but have higher average revenues conditional on

being successfully developed. That is, PrpD1 “ 1|P “ 1, N “ 1q ď PrpD1 “ 1|P “ 1, N “ 0q

and ErR|S ¨ DM “ 1, N “ 1s ě ErR|S ¨ DM “ 1, N “ 0s.

2. High learning benefit. If RN“1
ď R

N“0, then novel drugs are more likely to be developed

conditional on entering pre-clinical testing but have lower average revenues conditional on

being successfully developed. That is, PrpD1 “ 1|P “ 1, N “ 1q ě PrpD1 “ 1|P “ 1, N “ 0q

and ErR|S ¨ DM “ 1, N “ 1s ď ErR|S ¨ DM “ 1, N “ 0s.

Proposition 3.2 provides a diagnostic to help reveal firms’ priorities. It states that one of two

cases is possible. In the first, firms place a high value on evaluation today: because incremental

projects are easier to screen, firms are more confident that the incremental drugs they bring into

development will reach FDA approval. The lower risk of failure allows them to profitably invest

in an incremental drug idea even when its projected revenue on approval is relatively low. This

case implies that incremental projects will be more likely to enter development and will have lower

revenues conditional on success. Alternatively, firms may place a high value on learning that will

improve their ability to evaluate tomorrow: because firms value the knowledge spillovers when they

explore new areas, they may be willing to invest in novel drugs even when their direct revenues

are likely to be low. Here, firms should be more willing to develop novel drug candidates and,

conditional on approval, novel drugs will have lower revenues.

We also consider how the firm’s development strategy varies with market characteristics.

Proposition 3.3.

1. Incremental drugs: The revenue threshold for development, RN“0, is constant in α, µQ, and

β. Thus, the probability of development conditional on entering pre-clinical testing (PrpD1 “

18In the knife-edge case that R
N“1

“ R
N“0, both cases obtain.
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1|P “ 1, N “ 0q) and the expected revenue conditional on successful development (ErR|S ¨

DM “ 1, N “ 0s) are constant in these parameters.

2. Novel drugs: The revenue threshold for development, RN“1, strictly decreases in α, µQ, and

β. So the probability of development conditional on entering pre-clinical testing (PrpD1 “

1|P “ 1, N “ 1q) weakly increases in α, µQ, and β; and the expected revenue conditional on

successful development (ErR|S ¨ DM “ 1, N “ 0s) weakly decreases in α, µQ, and β .

Intuitively, factors that reduce the spillover value of novel drugs lead firms to be more selective in

the novel drugs that they pursue, resulting in the development of fewer novel relative to incremental

drugs.

3.4 Model Discussion

3.4.1 Empirical Content

Each Proposition generates predictions that are testable in our data. We note that while novelty

in our model is binary, our empirical measure of novelty, defined in Equation (1), is a continuous

measure ranging from 0 to 1.

Proposition 3.1 predicts that, among drugs that enter human clinical trials, drugs that are less

novel are more likely to progress at each stage: from Phase 1 development to Phase 2, Phase 2 to

Phase 3, and Phase 3 to approval. These quantities are observable in the Cortellis data.19 We find

evidence consistent with this prediction in Section 4.1.

Proposition 3.2 uses observable quantities to infer the value that firms place on learning relative

to evaluation. This is important because the value of information about a drug’s success—the

evaluation benefit in the present, and the learning benefit in the future—is difficult to measure

directly. We can think of two distinct sources of value: spurring additional development of promising

drugs, and shutting down research that would fail. While we can proxy for the former (a drug’s

direct revenue as well as successor counts and revenue), we have no way of directly measuring the

value of avoiding bad projects, which never show up in our data. Proposition 3.2 allows us to infer

the net value from both sources using information in our data: development decisions (which we

define as progressing past pre-clinical testing to enter human clinical trials) and revenues conditional

on success. In particular, it first makes the testable prediction that if novel drugs are more likely

to be developed than incremental drugs, then they will also have lower average revenue conditional

on success, and vice versa. It then tells us that whichever type of drug has a higher development

probability (and lower average revenue) is the one favored by the firm. We find evidence that firms

prefer incremental drugs in Section 4.2.
19Using a similar dataset, Krieger et al. (2021) show that novel drugs are less likely to be approved, conditional on

entering Phase 1.
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Finally, Proposition 3.3 provides comparative statics about three model parameters: the appro-

priability of revenues from successor drugs (α), the number of expected successors to a novel drug

(µQ), and the weight that firms place on future profits (β). An increase in any of these parameters

makes firms more willing to invest in novel drugs. This has two testable empirical implications.

First, we expect firms to bring more novel drugs into development under higher parameters: the

average novelty of drugs in development should be increasing in α, µQ, and β. Second, we expect

that the correlation between novelty and revenue (given approval) will be less positive when α, µQ,

or β is higher.

Empirically, we proxy for these parameters in the following ways. To obtain variation in appro-

priability, we examine research areas with different numbers of firms actively competing to develop

drugs. Similarly, we use information on a drug’s therapeutic area, biological target, and develop-

ment history to obtain variation in its number of expected successors. Finally, we adopt Gormsen

and Huber (2023)’s measures of firm-level discount rates (measured from analysis of earnings call

text) to get variation in the weight that firms place on future profits.

3.4.2 Model Assumptions

Our model makes a number of simplifying assumptions. For instance, we assume that the arrival

of different types of drugs is exogenous and undirected, i.e., the firm does not specifically seek out

novel or incremental drugs. In addition, we assume that the knowledge generated by developing a

novel drug accrues to all firms in the market, so that the developing firm does not have any specific

advantage. These simplifications allow us to reduce the number of parameters and assumptions in

our model, so that we can focus on its central tradeoff of evaluation versus learning.

We also wish to highlight a key substantive assumption, that the underlying distributions of

success likelihoods and revenues are the same for novel and incremental drugs. The motivating

premise is that these drugs are distinguished only by a researcher’s information. The same phys-

ical molecule, with the same underlying biological action, is novel if no similar molecule has been

developed in the past, but would be incremental otherwise. Because any molecule could be novel

or incremental depending on the state of prior research, we view both types of drug candidates as

being drawn from the same distribution of project fundamentals. Unfortunately this assumption is

not directly testable because the initial distribution of quality for nascent ideas is fundamentally

unobserved: beyond the fact that datasets such as Cortellis do not capture all drugs in discovery

stages, many ideas occur to a researcher but are never recorded.

Assuming that the underlying distribution of returns is the same for novel and incremental

projects allows us to highlight the role that selection plays in shaping the observed traits of drugs in

development. In our model, differences in the risk and returns associated with novel and incremental

drugs in development emerge endogenously from differences in the criteria that firms apply when
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deciding which projects to pursue. Our goal is to highlight how this simple mechanism can generate

many of the empirical patterns we observe. In Section 4.4 we provide a more detailed discussion of

alternative explanations for these patterns.

Relatedly, while our model is of a single firm developing a single drug, we will test the model

by studying outcomes across firms and drugs. This means that we will be aggregating across

decisions that have different underlying parameters. For instance, one could imagine that larger

firms with more resources than small firms are better equipped to generate follow-on drugs. In

the context of the model, that would correspond to these firms having a larger appropriability

parameter α. Alternatively, large public firms might face stronger pressure to generate short-term

returns. That would mean that they have a lower discount factor β. Given these conflicting factors,

our model does not make unambiguous predictions about how firm size—or other dimensions of

firm heterogeneity such as incumbency, prior research experience, or product portfolio—influence

how firms value learning versus evaluation. We focus our empirical analysis on the parameters

highlighted in Proposition 3.3, for which we can make clearer predictions.

4 Empirical Results

4.1 Trial Progression

Our first empirical results focus on the progression of drugs through clinical trials and FDA approval.

Proposition 3.1 predicts that incremental drugs are more likely to progress at every stage. This is

because better information allows firms to more accurately identify incremental projects that are

likely to be successful. To test this, we estimate regressions of the following form:

Progressioni “ a0 ` a1Noveltyi ` δt ` δd ` εi (9)

As with our earlier analysis, Equation (9) is estimated at the drug level. Our main outcomes of

interest, Progressioni, are indicators for whether drug i reaches Phase 2, 3, and approval. The

sample used in each regression is the set of drugs that made it to prior stage in the United States.

For example, when examining whether drugs enter Phase 3 of clinical trials, we restrict to drugs that

have entered Phase 2. The main outcome of interest is explanatory variable of interest is Noveltyi,

with 0 indicating no molecular overlap with prior drug candidates and 1 indicating identical atoms

and bonding. In our primary specifications, we include controls for cohort fixed effects (development-

year-quarter) δt as well as fixed effects δd for a drug candidate’s lead disease indication (ICD-9).

Figure 4 presents the corresponding binned scatterplots associated with Equation (9), with

corresponding regression coefficients reported in Table 3. Panel A considers the relationship between

a focal drug’s novelty (one minus its maximum pairwise Tanimoto similarity score) and its likelihood

of progressing from the first stage of clinical trials (Phase 1) into the second (Phase 2). Our
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specification compares drug candidates that are developed at the same time, for the same disease,

but which differ in their novelty. We find statistically significant associations between a drug’s

novelty and its likelihood of progression through each stage of clinical trials. Column 2 of Table 3

provides the analogous regression specification. The coefficient on novelty of ´0.089 indicates that

a one standard deviation increase in novelty (0.26), is associated with a 0.26ˆ´0.089 “ 0.023 or 2.3

percentage point decrease in the likelihood of entering Phase 2 trials, conditional on entering Phase

1. This translates into a relatively modest 3.2 percent decrease from the mean. In Panels B and

C (corresponding to Columns 4 and 6 of Table 3), we see larger negative relations between novelty

and progression: one standard deviation increase in novelty is associated with a 13.7% decrease in

progression from Phase 2 to Phase 3 and a 9.2% decrease in progression from Phase 3 to launch.

4.2 Evaluation vs. Learning

Our next section presents our main empirical exercise. Here, we evaluate whether firms prioritize the

ability to better assess incremental drugs or the opportunity to learn from developing novel drugs.

Proposition 3.2 states that if firms care more about evaluation, they will set a lower threshold for

developing incremental drugs. In that case, incremental drugs will be more likely to be developed

and their revenues will be lower on approval. If firms instead care more about learning, we would

find the opposite pattern. To examine this, we estimate two separate specifications.

Enter Developmenti “ a0 ` a1Noveltyi ` δt ` δd ` εi (10)

Revenuei “ a0 ` a1Noveltyi ` δt ` δd ` εi (11)

Equation (10) asks whether novel drugs are more likely to be developed. The regression is

estimated at the drug level but unlike our previous samples, contains all drug candidates observed

in pre-clinical development in the United States. Because pharmaceutical firms tend to patent drug

candidates very early in the research process, datasets like Cortellis are able to capture many drug

candidates that have only been through some lab and animal testing. In our primary specifications,

we include controls for cohort fixed effects (pre-clinical entry year-quarter) δt as well as fixed effects

δd for a drug candidate’s lead disease indication (ICD-9).

Equation (11) tests whether novel drugs generate higher direct revenues, upon approval. For

this analysis, we restrict to the set of candidates that reach approval in the United States. Again,

our specifications include cohort and disease fixed effects.

Figure 5 presents our analysis and provides evidence that firms care more about evaluation: that

is, we are in Case 1 of Proposition 3.2. First, Panel A shows the binned scatterplot corresponding to

Equation (10). We find that, among drugs that enter pre-clinical investigation at the same time, for
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the same disease, novel drug candidates are substantially less likely to enter clinical development.

The accompanying magnitudes, reported in Column 2 of Table 6, indicate that a one standard

deviation increase in novelty (0.21 in the pre-clinical sample), is associated with a 0.21ˆ 0.27 “ 5.7

percentage point decrease in the likelihood of entering development, or an approximately 15%

decrease from our baseline development rate.

Second, Panel B shows the binned scatterplot corresponding to Equation (11). We find that

novel drugs generate more revenue conditional on approval. As reported in Column 4 of Table 6,

a one standard deviation increase in novelty is associated with an increased annual revenue of just

over 0.21 ˆ $515 “ $108 million, or an over 25% increase from the overall mean among launched

drugs. This pattern is consistent with firms using a traditional NPV calculation (as if β « 0 in our

model): if firms view novel drugs as riskier to develop, then they will only invest if they anticipate

higher revenues on approval.

Before continuing, we note that in Panel C of Figure 3, we showed that novel drugs have higher

expected direct revenues when compared to more incremental drugs. Without the context of a

model, one might conclude that novel drugs are unambiguously better: they generate as much

direct revenue, and they also provide knowledge spillovers for the future. Our model, however,

highlights the role of selection. Firms apply a higher revenue threshold for developing novel drugs

and, as such, the set of novel projects we observe in development will appear to be drawn from a

better distribution. We move on to our next proposition below, but discuss alternative explanations

for this main result in Section 4.4.

4.3 Comparative Statics

Proposition 3.3 highlights three key parameters that increase the value that firms place on learning:

appropriability (α), the expected number of successors for novel drugs (µQ), and the firm’s discount

factor (β). In all cases, our model predicts that increases in these parameters will lead firms to

invest in more novel drugs. Empirically, this translates into two predictions.

First, the average novelty of drugs in development should be higher when the parameters α, µQ

or β are higher. This reflects the fact that if firms value exploration, they should invest in a higher

share of the novel drug candidates they encounter. We examine this by estimating the following

regression:

Noveltyi “ a0 ` a1Parami ` Xβ ` δt ` εi (12)

Here, the explanatory variable of interest, Parami is a proxy for α, µQ, or β. The sample size will

vary depending on the number of drug candidates for which we can obtain measures of Parami. For

example, our analysis of firm discounting involves using data gathered from public firms’ earnings

calls by Gormsen and Huber (2023) and therefore only includes drugs i that are put into clinical

trials by public firms included in Gormsen and Huber (2023)’s data. In all specifications we control
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for drug cohort fixed effects and depending on our parameter of interest, we include additional

controls Xβ, discussed later in this section.

Second, we predict lower revenues for approved novel drugs when α, µQ or β are higher, reflecting

a lower revenue threshold for making these investments. Because our measure of novelty is continu-

ous, we operationalize this prediction by examining the relationship between novelty and revenues,

in settings where α, µQ or β is high versus low. Specifically we run the following regression:

Revenueit “ a0 ` a1Noveltyit ˆ IpParam > Medianq (13)

`a2Noveltyit ˆ IpParam < Medianq ` Xit ` Xβ ` δt ` εi

Equation (13) is similar to Equation (11) but instead of examining the overall relation between

novelty and revenues among approved drugs, we compare this correlation in settings with high and

low parameter values. Specifically, recall that there is a positive correlation between drug novelty

and revenues on approval in our overall data (Figure 5 Panel B). Interpreted in light of Proposition

3.2, this suggests that firms apply a higher revenue threshold for developing novel rather than

incremental drugs. Proposition 3.3 predicts that when α, µQ or β are low (e.g. firms value learning

less), then the correlation between novelty and revenues should be even higher—because firms would

require higher direct returns in order to justify investments in novel drugs.

Before continuing, we note that even though our model has the same sign on the comparative

statics for α, µQ, and β (higher means greater value of learning), the signs in our empirical analysis

will sometimes be flipped. This is because we run our analyses in terms of the natural units for

the measured proxies for these variables. In particular, we proxy for appropriability, α, through

the number of competitors, where more competitors corresponds to lower appropriability. And we

proxy for discount factor β using a measure of yearly firm discount rates, where a higher discount

rate means a lower discount factor.

Finally, we emphasize our analysis will be based on correlations and, particularly in the case of

discount rates, limited by small sample sizes. While we include controls for potential cofounders

where we can, the goal of this analysis is to provide empirical evidence that is consistent with the

predictions of Proposition 3.3, rather than to exclude all other potential explanations.

4.3.1 Competition

A firm that develops an innovative drug with many eventual successors only values the revenue

from those successors that it develops itself. Figure 6 shows the amount of a focal drug’s successor

revenue that accrues to the same firm versus the amount that accrues to the rest of the market.

We find that, at any stage of development, approximately half of a drug’s future successor revenues
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accrue to rival firms. Proposition 3.3 predicts that when firms expect to capture less of the future

revenues (lower α), they will apply a higher bar for investing in novel drugs.

To test this prediction, we link focal drugs to their primary “research area,” which we define

as the nexus of their disease target (ICD-9) and mechanism of action (MOA) (for example, statins

are designed to treat heart disease by inhibiting the HMG-CoA reductase enzyme). We define a

notion of research area competitiveness by examining the number of pre-clinical drug candidates in

this area that have been developed by other firms over the previous five years. Firms working in

research areas with more active competitors may be less able to appropriate spillovers from their

own investments.

In Panel A of Figure 7, we present the binned scatterplot corresponding to Equation (12). We

see evidence of a strong negative relationship: in more competitive areas (lower α), the average drug

that enters development tends to be less novel. Column 1 of Table 4 indicates that a 10 percent

increase in competition is related to an 0.75 percent decline in average novelty.

Next, Panel B of Figure 7 plots the coefficients estimated in Equation (13). In settings where

competition is high, we see a more positive relation between novelty and revenues. The coefficient

estimates presented in Column 1 of Table 5. We find that a one standard deviation increase in novelty

in above median competitive research areas increases revenues on approval by twice as much as in

below median competitive areas. Taken together, the results in Figure 7 provide evidence consistent

with the idea that firms become more selective in developing novel drugs when appropriability

concerns diminish the private value of successor revenue.

One may be concerned that more competitive areas are more crowded and may simply have

fewer novel drugs left to discover. To address this, our analysis above controls for the total amount

of research being conducted in an area defined in several ways: the total number of drug candidates

(irrespective of the originating firm) that have ever entered pre-clinical development in the focal

drug’s ICD9-MOA to date, as well as total entry for the entire disease area or mechanism of action.

As such, our results should be interpreted as saying that the average novelty of drugs is lower in

more competitive research areas, holding constant the overall amount of research activity that has

occurred in these areas to date.

Further, we note that if there were an unobservable factor that simply increases the number of

novel drug candidates that are available for firms to develop, we would expect the average novelty of

developed drugs to be higher, but their average revenues on approval to remain the same. Rather,

the joint pattern presented in Panels A and B is most parsimoniously explained by firms lowering

the revenue threshold used to assess whether or not to develop a novel drug candidate.
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4.3.2 Expected Successors

Proposition 3.3 also predicts that firms will be more interested in developing novel drugs when they

expect such drugs to yield more successors (higher µQ). The expected number of successor candi-

dates can vary systematically across drugs due to differences in market attractiveness or scientific

potential. For example, drug candidates that identify a promising new biological pathway are more

likely to influence subsequent chemical structures than drugs that explore well-known pathways.

We construct the expected number of successors for a given drug candidate using fitted values

from a regression of a drug’s actual number of chemical successors (using the measure we develop

in Section 2.2) on fixed effects for its year of entry, disease market (ICD-9), as well as entry order

into its biological target area.20 This is all information that a firm would be aware of at the time it

makes its investment decision.

Figure 8 repeats the exercise described in the previous section, but with Parami corresponding

to predicted successors. In Panel A, we show that the average novelty of drug candidates that firms

invest in developing is higher in settings where firms expect focal drugs to generate more successors.

Column 2 of Table 4 indicates that a 10 percent increase in the expected number of successors

corresponds to a 1 percent increase in average novelty.

Again, this correlation could reflect other factors. For example, research areas with more ex-

pected successors may separately have more novel drug candidates that have yet to be discovered.

While we cannot control for all observed aspects of research potential, our analysis here again in-

cludes detailed controls for the number of prior drug candidates that have been developed in these

research areas, as described earlier. We are thus comparing the novelty of drugs being developed in

areas with a similar stock of existing innovation.

Next, Panel B of Figure 8 shows that when the expected number of successors is higher, the

direct revenues that novel drugs generate tends to be lower. Indeed, the overall positive relation

between novelty and revenue documented in Panel B of Figure 5 is driven almost entirely by settings

in which firms expect investments to generate relatively few successors. When successors are likely,

firms do not appear to hold novel drugs to a higher revenue threshold. The accompanying regression

coefficients are presented in Column 2 of Table 5. Appendix Figure A.4 presents alternative versions

of Figure 8 using different definitions of successors. The results are consistent across all versions.

4.3.3 Firm Discount Rates

Finally, Proposition 3.3 predicts that firms with higher discount rates (lower β) will be more re-

luctant to develop novel drugs. To test this, we match our sample to Gormsen and Huber (2023)’s

measures of self-reported measures of discount rates that firms apply to their investment decisions,
20Specifically, we use the focal drug candidate’s entry order across three different “levels” in the Cortellis biological

target “tree”, an ontology where each level represents a different amount of granularity of describing a biological target
or target-action (e.g., g-coupled receptors vs. “angiotensin II type 1 receptor agonist”).
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as described in Section 1.2. Due to the small sample size of matched firms, we stress that this

analysis is meant to be suggestive.

Figure 9 examines the relationship between a firm’s self-reported discount rate and its decisions

to invest in novel drugs. Panel A shows that the average novelty of drugs developed by firms with

a high discount rate tends to be lower. Column 3 of Table 4 indicates that a 10 percent increase

in a firm’s discount rate is associated with a 2.9 percent decrease in average novelty. Column 3 of

Table 5, meanwhile, shows that among approved drugs, novelty is only positively correlated with

revenues when discount rates are high.

Taken together, our findings across Sections 4.3.1, 4.3.2, and 4.3.3 provide consistent evidence

that factors which decrease the value of future learning lead firms to become more selective when

investing in novel drugs in the present.

4.4 Alternative explanations

The underlying tension in our model is that novel drugs have both an advantage and a disadvantage

relative to incremental drugs. On one side of the ledger, firms have less information about whether

a novel drug will advance to the market if developed. On the other side, the process of developing

a novel drug generates information about future, as-yet-undeveloped drugs. With both advantages

and disadvantages of novelty, it is unclear which type of drug a firm would prefer to develop. We

view the main results of the paper as those coming from the diagnostic test proposed in Proposition

3.2. Firms that prioritize learning will apply a lower revenue bar when deciding whether to develop

a novel drug candidate. As a result, novel drugs will be more likely to be developed, and their

revenues conditional on approval should be lower. Alternatively, firms that prioritize evaluation

will develop more incremental drugs, and those drugs should have lower revenues on approval. Our

evidence in Section 4.2 and Figure 5 finds that firms prioritize more reliable evaluation over learning.

In Section 4.3, we show that three different features—more appropriability, more successors of novel

drugs, and higher weight on the future—all appear suggestively correlated with firms placing more

value on learning, and thus shifting development toward novel drugs.

This interpretation relies on a key assumption in our model: that novel and incremental drugs

are initially drawn from the same distribution of success probabilities and revenues. This assumption

allows us to attribute differences among novel and incremental drugs observed in development to

differences in firms’ selection decisions. In practice, however, differences in development rates or

revenues between novel and incremental drugs could arise for reasons unrelated to those our model

focuses on. For example, it may simply be the case that novel drugs are drawn from a distribution

with fatter tails: there are more novel drugs that are likely to fail, and more novel drugs that are

likely to be blockbusters. In this case, fewer novel drugs would enter development but their average
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revenues would be higher—even if firms were applying the same development thresholds for novel

and incremental drugs.

Because we cannot observe the universe of potential drug ideas, novel or incremental, we cannot

rule out the possibility that our main results are driven by fundamental differences in distributions.

However, in this section, we provide additional discussion and analysis aimed at highlighting why

the explanation provided by our paper is plausible.

First, suppose that it is indeed the case that the distribution of novel drug ideas is fatter tailed.

While this would explain our main results in Figure 5, it would not explain how our results differ

across different parameters for appropriability, number of expected successors, and firm discount

rates. To explain all of those results, we would need to further assume that the primitive distribution

of novel drug ideas is fatter tailed in more competitive research areas and in more active research

areas and for firms who face higher discount rates. While there may be explanations for each of

these possibilities, we believe that our model provides a more parsimonious explanation, driven by

a very plausible assumption: that novel and incremental drugs differ primarily in how much we

information we have about them.

Second, many alternative explanations for why incremental drugs may be more likely to be ap-

proved or have lower revenues implicitly focus on drugs that are derivative of successful prior drugs.

For example, firms may be more likely to develop incremental drugs related to previously approved

drugs because they have received a positive signal about that entire class of drugs. Similarly, such

incremental drugs, once approved, may have lower revenues because they are more similar to exist-

ing treatment options. Our model, however, predicts that even incremental drugs related to failed

predecessors can be more likely to be approved and have lower average revenues. This is because

our model highlights information as the primary distinguisher of novel and incremental drugs: as

long as firms learn from developing prior related drugs, incremental drugs related to failed succesors

will still be easier to evaluate.

To examine this, Tables 7 and 8, we test the predictions of Propositions 3.1 and 3.2 after

excluding follow-on drugs linked to predecessor drugs that are FDA approved. That is, we compare

molecularly novel drugs to molecularly incremental drugs that are derivative of failed predecessors.

Consistent with Proposition 3.1, our results in Table 7 show that incremental drugs based on failed

predecessors are still more likely to progress through development. In Table 8, we look once again

at firms’ thresholds for developing novel versus incremental drugs. In Columns 1 and 2, we show

that novel drugs are still less likely to enter development and, in Columns 3 and 4, that they

continue to have higher revenues on approval. In all these regressions, our estimated magnitudes

are similar. This suggests that the process of developing a drug generates information about future

drugs, regardless of whether the focal drug succeeds or fails. Firms, it appears, value the evaluation

benefits of developing any type of incremental drug.
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4.5 Discussion: welfare and policy

While it need not be inefficient for firms to prioritize the development incremental drugs over novel

ones, our model and empirical results do highlight a specific case in which firms appear to underinvest

in novelty: when competition between firms leads to imperfect appropriability. Developing novel

drugs generates learning spillovers that benefit society. When the focal firm cannot capture the

full benefits of these spillovers, it will underinvest in developing novel drugs relative to an efficient

benchmark. (There would still be underinvestment on the margin even if we had found that firms

prioritized novel drugs over incremental ones.) Empirically, we provide evidence consistent with

this inefficiency: firms facing less competition tend to invest in more novel drugs.

In highly competitive markets, our results suggest that there may be gains to policies that pro-

vide incentives for R&D organizations to internalize the social value of spillovers from exploratory

projects. One can imagine several broad aims of policy interventions: 1) limiting follow on com-

petition (e.g., broader patents, regulatory protections against “me-too" products); 2) improving

contracting related to follow on work (e.g., reach-through rights, standardized licensing); 3) shift-

ing high-spillover work toward parties that internalize future social spillovers (e.g., public funding,

government sponsored trials); or 4) those aimed directly subsidizing novel innovations (e.g., break-

through regulatory designations, tax credits).

Many pharmaceutical patents focus not just on a single drug compound or molecule, but on

broader families of molecules, denoted by so-called “Markush structures.” A firm’s original patent

for a focal drug may therefore also give it IP rights over chemically similar follow-on drugs. There

has been an active debate among policymakers regarding how broad pharmaceutical patents should

be (Wagner et al., 2022). Our paper highlights a distinct mechanism: allowing firms to patent

broader families of molecular compounds may change not just their incentives to invest in R&D

overall, but also impact the composition of their investments, favoring greater exploration.21

The downside of broader patent rights, of course, is that such rights may be too blunt and may

reduce follow-on innovation by others (Shapiro and Gilbert, 1990; Hegde et al., 2022; Wagner et al.,

2022). Policy-makers may alternatively focus on improving contracting between firms that create a

focal innovation and those interested pursuing follow-on innovation. One possible policy remedy is

to grant the original patent holder a standardized level of “reach-through” rights (i.e., compulsorily

licensing, standardized royalties) to exercise over other firms that file follow-on patents within a

highly similar family of compounds. Such a policy would give the original inventor an advantage

in capturing the follow-on learning benefits, without granting the innovator the right to block all

follow-on development efforts.
21One way in which lawmakers have navigated the tension between wider protections and allowing follow-on work

by other firms is the notion of a “selection patent.” Even if a specific compound is contained within a Markush
structure on an existing patent, the initial inventor or other firms may still apply for a separate patent, as long as it
can demonstrate unexpected or advantageous properties of the selected compound(s).
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Changes to IP regimes are likely to generate a trade-off between improving incentives for ex-

ante exploration (by giving focal firms greater rights to downstream learning spillovers), and limiting

follow-on innovation by other firms. A different approach would be for more high-spillover research

to be performed by parties who value the future social benefits of learning spillovers. This view

would support more participation by public funding agencies in the development of foundational

research, or more applied research into particularly novel classes of drugs. Government involvement

might take a range of formats: government-run trials (via NIH programs); actively managing novel

research programs (e.g., DARPA, ARPA-H); or providing low cost testing infrastructure to the

private-sector (e.g., animal testing facilities, clinical trial support).

Finally, policymakers could incentivize private investments in novel drugs by using “pull” in-

centives that directly target more exploratory research programs. For example, investments in

clinical trials or publishing research on structurally novel drugs could confer special eligibility for

additional R&D tax credits or trade-able priority review “fast lane” vouchers similar to the FDA’s

breakthrough and orphan drug designations Ridley et al. (2006); Gans and Ridley (2013); Ridley

and Régnier (2016). In terms of policy, this prescription differs from that of the typical endogenous

growth model, which advocates for general R&D tax credits. In our case, general subsidies would

not necessarily increase surplus because firms choose the direction of innovation. Instead, tax credits

would need to be tied to the observable characteristics of specific investments, such as their novelty

or some assessment of their potential to generate spillovers. This points to a practical limitation

of such policies: if these project qualities are not easily observable, then the effectiveness of such

subsidies may be limited. Policymakers should then evaluate the success of such programs with a

longer term time horizon, using data that consider spillover outcomes, such as the number of drug

successors.

5 Conclusion

If past R&D investments inform future decisions, then firms face a choice: is it more valuable to

explore new areas to gain fresh insights, or to exploit the information revealed by past work?

In this paper, we show that although novel drug candidates generate more knowledge spillovers,

firms prefer to invest in incremental candidates, which are easier to evaluate. This presents a

dynamic tension: while firms value the scientific knowledge that allows them to more accurately

discard incremental drugs that are unlikely to succeed, they are reluctant to make the types of

exploratory R&D investments that improve future screening decisions. Our empirical results show

that, on average, firms place less emphasis on learning, which leads them to invest in fewer novel

drugs. Further, we provide evidence that firms’ reluctance to invest in novel drugs is especially

pronounced when firms expect to appropriate a smaller fraction of follow-on opportunities, when

they expect a drug to generate fewer such opportunities, or when future profits are heavily dis-
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counted. In demonstrating these results, our paper makes several contributions that may inform

future research.

First, we propose an alternative perspective on firms’ R&D investment decisions. In workhorse

models of innovation (e.g., Manso (2011) or Akcigit and Kerr (2018)), as well as empirical stud-

ies measuring the exploration-exploration tradeoff under different conditions (e.g., Azoulay et al.

(2011b), Zhuo (2023), Hoelzemann et al. (2024)), firms must decide between R&D projects that

differ in their inherent risk and rewards: novel R&D projects are modelled as higher risk and higher

reward, while incremental projects are modelled as safer, more modest bets. In this framing, novel

innovations generate value because of either their direct revenue potential, or the cumulative rewards

unlocked by early success (Callander, 2011). Our approach differs from this standard explore/exploit

framework in two key ways.

We view novel and incremental projects as distinguished by the amount of information firms

possess about their likelihoods of success, rather than by any inherent differences in risk. We show

how differences in observed risk can emerge endogenously as a result of differences in firm’s R&D

choices which reflect the information they have about projects. Viewed through this lens, the fact

that novel projects are thought of as being “high risk, high return” may simply be indicative of firms’

reluctance to invest in exploration, rather than some fundamental feature of novel projects. Indeed,

our model highlights how the very categories of “novel” or “incremental” are themselves shaped by

firms’ decisions. Projects are only incremental if some firm has chosen to invest in a related project

in the past. If this prior investment had not occurred, then the drug candidate in question today

would still be novel.

Second, we present a new mechanism by which competition can lead firms to underinvest in

innovation. In the existing literature, too much competition can reduce innovation by lowering

the profitability of the focal product. Our paper, in contrast, shows that competition can also

reduce innovation by diminishing the benefits of future learning. Since novel projects generate more

learning than incremental ones, this mechanism disproportionately discourages investment in more

radical innovations. Our findings underscore the need for policies that incentivize firms to internalize

the learning opportunities inherent in novel R&D, while still allowing competitors to benefit from

knowledge spillovers.

Third, we develop a concrete measure of knowledge spillovers that applies to projects regardless

of their success. Unlike discretionary measures of spillovers, providing a more concrete estimate of

the value of failed R&D in an important setting, drug development. More broadly, this method

of linking products over time through their structural evolution could be applied in other settings,

such as analyzing prototypes and hardware architecture (e.g., via product design images, patent

documents, engineering plans, or regulatory filings).
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Finally, we emphasize the practical importance of valuing failed R&D efforts. Our descriptive

analysis reveals that drugs generate significant value through successor spillovers, many of which

originate from unsuccessful trials. This finding reinforces our modeling approach, where firms

internalize such spillovers. However, in practice, modern project valuation tools that firms commonly

use—such as real options analysis, Monte Carlo simulations, and machine learning techniques to

evaluate and predict outcomes in their pipelines—all fail to account for the value of future learning

opportunities (Nichols, 1994; Cassimon et al., 2004; Hartmann and Hassan, 2006; Gunther McGrath

and Nerkar, 2004; Siah et al., 2021; Scannell et al., 2022). Our analysis demonstrates that, by

neglecting spillovers in their valuation criteria, firms risk under-investing in the development of

novel drugs, ultimately leading to fewer breakthroughs and less cumulative learning. Therefore,

incorporating the learning benefits of exploratory R&D investments poses both a measurement and

communication challenge.
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Figure 1: Example of Novel Drug and Follow-On

Notes: This figure displays the molecular structure of two drugs that are linked in the data. The drug on the
left (Panel A), telapristone acetate (Proellex), is a molecularly novel compound that entered clinical trials for the
treatment of uterine fibriods in 2004, sponsored by the biotech company Repros Therapeutics. Several years later,
during Phase 3 trials, development was halted due to patients experiencing liver toxicity issues. Despite this, Proellex
inspired the development of 5 successor drugs. One of those drugs, ulipristal acetate (Ella) is pictured in Panel B,
and has a Tanimoto similarity of 0.81 to Proellex. Ella was developed by a different drug company, HRA Pharma
and was approved in 2010. It is currently on the World Health Organization’s list of essential medicines.
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Figure 2: Successor Revenue, by Development Outcomes
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Notes: Figure 2 plots information on successor drugs and successor revenues for drug candidates in our data. Panel
A shows the average number of successor drug attempts for drugs by their highest stage of development reached (e.g.,
phase 1 drugs are those that never graduated to phase 2 and beyond). Panel B plots average successor revenues per
drug. Panel C provides the same information, except aggregated over all drugs in our sample. Successor revenues
are defined as the sum of average annual revenues across all successor drugs to a given focal drug. Panels B and C
present raw drug and revenue counts, and have not been adjusted for cohort differences. The sample includes drugs
that enter clinical development in the United States.
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Figure 3: Successor Revenues, by Novelty
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Notes: Panels A-C of Figure 3 presents binned scatterplots of the relationship between a drug candidate’s novelty
and measures of successor activity and revenues, at the individual drug level. All specifications include controls for
a focal drug’s quarter of development and lead disease indication. The sample includes drugs that enter clinical
development in the United States. To account for the fact that many drugs have no direct or successor revenues (so
that their successor revenue share would be undefined), Panel D plots successor revenue shares aggregated by deciles
of novelty. To compute this, we first residualize novelty by fixed effects for the drug’s quarter of development and
lead disease indication and then calculate the ratio of successor to successor plus direct revenues across all drugs that
fall in each novelty decile. Table 2 presents accompanying regressions for Panels A-C, as well as for drug-level shares
of successor revenues.
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Figure 4: Progression through Development, by Novelty
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Notes: Figure 4 present a test of Proposition 3.1. Each panel presents a binned scatter plot of the relationship
between a drug candidate’s molecular novelty and measures of its progression in clinical trials. All specifications
include controls for quarter of development and disease indication. The sample includes drugs that enter clinical
development in the United States. Accompanying regression estimates are presented in Table 3.
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Figure 5: Entry into Development and Revenues on Success, by Project Novelty
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Notes: Figure 5 provides an empirical analysis of Proposition 3.2. Panel A presents binned scatterplots of the
relationship between a focal drug’s novelty and a firm’s decision to invest in clinical drug development. Here, the
sample is all drugs that are observed in Cortellis data for US pre-clinical development. In Panel B, we present
binned scatterplots of the relation between novelty and average annual direct revenues, for the set of drugs that are
approved in the US. All specifications include controls for quarter of development as well as for disease area FEs.
The corresponding regression estimates are presented in Columns 2 and 4 of Table 6.

44



Figure 6: Appropriability of Successor Revenues
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Notes: Figure 6 plots the expected annual successor revenues, by their highest stage of development reached. The
blue portion of each bar represents the average annual successor revenues for drugs developed by the same firm as the
focal drug, while the red portion reflects successor drugs developed by different firms. Successor revenues are defined
as the sum of average annual revenues across all successor drugs to a given focal drug. These graphs present raw
drug and revenue counts, and have not been adjusted for cohort differences. The sample includes drugs that enter
clinical development in the United States.
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Figure 7: Competition and Investments in Novelty Drugs
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Notes: Panel A presents a binned scatterplot of a focal drug’s novelty and the extent of research competition in
the focal drug’s area. Panel B plots the estimated relationship between novelty and revenues for approved drugs,
separately for drugs in therapeutic areas with high research competition and those with low research competition.
Research area competition is measured by the number of new drugs developed by competitor firms over the previous
5 years. To ensure that we are not identifying differences driven by the overall amount of research in an area, we
control for various measures of total research activity in a research area. All specifications include controls for quarter
of development and disease area FEs. Panel B corresponds to Column 1 of Table 5.
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Figure 8: Expected Successors and Investments in Novelty Drugs
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Notes: Panel A shows the relationship between novelty and the expected number of chemically similar successor
drugs (µQ) in 20 equal sized bins. Panel B shows the relationship between chemical novelty and focal drug revenue
for FDA approved drugs in the sample, split by the median level of expected successors. The expected successors
values are predicted based on a regression of number of observed successors on the development entry order into
a biological target area, as well as fixed effects for clinical entry year and disease market. Panel B corresponds to
Column 2 of Table 5. Appendix Figure A.3 shows the distribution of expected successors and provides more detail
about the estimation procedure.
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Figure 9: Discount Rates and Investments in Novelty Drugs

A. Average Drug Novelty, By Discount Rate
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Notes: Panel A shows the relationship between chemical novelty and discount rates of the developing firm in 20
equal sized bins. The binscatter controls for the quarter in which the drug candidates entered phase 1 clinical trials.
Panel A corresponds to Column 3 in Table 4. Panel B shows the relationship between drug candidates novelty and
revenue (for approved drugs), split by the median discount rate in our sample. The regression controls for drug
approval year. Discount rate measures come from Gormsen and Huber (2023). Revenue data comes from Evaluate
Pharma. Panel B corresponds to Column 3 of Table 5.
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Table 1: Drug Candidate Analysis Sample

Panel A: Full Sample (Counts)
Drugs 17,630
Companies 3,019
Lead Disease Indications (ICD-9s) 375
Drugs (phase 1 and above) 7,098
Drugs (approved) 1,379

Panel B: Drug Candidate Characteristics

Mean p25 p50 p75 p99
Novelty Score 0.48 0.36 0.57 0.65 0.80
Direct Revenue 16.10 0.00 0.00 0.00 439.79
# Successors 0.18 0.00 0.00 0.00 3.00
Successor Revenue 4.12 0.00 0.00 0.00 7.21

Notes: Table 1 presents descriptive statistics for the analysis data set of drug candidates. Panel A shows the
number of drug candidates, number of companies, number of lead disease indications, number of drug candidates
that reached clinical trials, and number of drug candidates that are approved during our analysis time frame. Panel B
shows characteristics of drugs. The novelty score is equal to a 1 minus the focal drug candidate’s maximum similarity
to drugs that had previously reached phase 1 trials at the time the focal drug entered initial development. Direct
revenue is the annual revenue associated with the focal drug. Number of successors is the number of follow on drugs
attributed to the focal drug. And successor revenue is the sum of the future annual revenue for all successor drugs
associated with a given focal drug. Revenues values reported in $millions.
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Table 3: Drug Novelty: Progression by Phase

(1) (2) (3) (4) (5) (6)
VARIABLES Phase 1–2 Phase 1–2 Phase 2–3 Phase 2–3 P3–Launched P3–Launched

Novelty Score -0.137*** -0.0892*** -0.302*** -0.244*** -0.178*** -0.145**
(0.0271) (0.0296) (0.0360) (0.0391) (0.0549) (0.0623)

Observations 3,913 3,844 2,871 2,802 1,329 1,266
R-squared 0.111 0.181 0.120 0.226 0.161 0.331
Drug Cohort Year-Qtr FE YES YES YES YES YES YES
Lead Indication FE YES YES YES

Robust standard errors in parentheses
*** pă0.01, ** pă0.05, * pă0.1

Notes: Table 3 presents the relationship between a drug candidate’s novelty and its probability of progressing
through clinical trials (Phase 1 to Phase 2; Phase 2 to Phase 3; Phase 3 to approval). The sample consists of all
drug candidates that enter Phase 1 development in the United States. All regressions include drug year-quarter of
development fixed effects. Columns 2, 4, and 6 additionally include fixed effects for the first indication (ICD-9) for
which the drug entered development.
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Table 4: Relation Between Future Value Parameters and Average Drug Novelty

(1) (2) (3)
Novelty Novelty Novelty

Competition -0.0292***
(0.00305)

Exp. Successors 0.148***
(0.0223)

Discount Rate -1.090**
(0.547)

Observations 4,987 3,081 912
R-squared 0.123 0.125 0.076
Dev. Entry Qtr FE YES YES YES

Notes: This table shows the correlation between each of the three future value measures—expected successors,
competition, and discount rate—and the chemical novelty of those drugs. Each regression has fixed effects for the
year of clinical development entry. Columns 1 and 2 additionally control for the stock of entry (to-date) in the disease
indication. Expected successors is calculated based on the entry year, disease indication (ICD-9), and project entry
order into the biological pathway for a given development project. Competition is estimated as the log of recent
entry (last five years) by competing firms into a given indication and mechanism of action (MOA). Discount rate is
estimated quarterly by Gormsen and Huber (2023) for public firms that disclose information about the discount rate
they apply in their investment decisions in earnings calls with analysts. Our sample includes all drugs that enter
Phase 1 clinical development. Robust standard errors are in parentheses, and *** pă0.01, ** pă0.05, * pă0.1.
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Table 5: Relation Between Revenue and Novelty, for High and Low Future Value
Parameters

(1) (2) (3)
Revenue Revenue Revenue

Low Competition ˆ Novelty 439.4*
(235.8)

High Competition ˆ Novelty 939.4**
(371.9)

Low Exp. Successors ˆ Novelty 506.9**
(218.9)

High Exp. Successors ˆ Novelty 95.35
(220.2)

Low Discount Rate ˆ Novelty -298.8
(463.8)

High Discount Rate ˆ Novelty 771.9*
(448.3)

Observations 352 352 82
R-squared 0.335 0.321 0.255
Launch Year FE YES YES YES
Indication FE YES YES

Notes: Table 5 shows the relationship between novelty and the focal drug’s average annual revenue, interacting
novelty with the median splits (low vs. high) of each measure of future value. Expected successors is calculated
based on the entry year, disease indication (ICD-9), and project entry order into the biological pathway for a given
development project. Competition is estimated as the log of recent entry (last five years) by competing firms into
a given indication and mechanism of action (MOA). Discount rate is estimated quarterly by Gormsen and Huber
(2023) for public firms that disclose information about the discount rate they apply in their investment decisions in
earnings calls with analysts. Columns 1 and 2 in Panel B control for the stock of total entry to-date in the given drug
class (indication-MOA) and novelty ˆ that level of entry. Column 2 further controls for the count of entry by other
firms into that drug class to-date. The sample size varies in each column based on the number of drugs we are able
to match to the given measure, but focuses on the sample of FDA approved drugs. We exclude disease indication
fixed effects in Column 3 of Panel B due to power limitations. Robust standard errors are in parentheses, and ***
pă0.01, ** pă0.05, * pă0.1.
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Table 6: Development Thresholds, by Novelty

(1) (2) (3) (4)
Entered Entered Revenue Revenue

VARIABLES Phase 1 Phase 1 if Approved if Approved

Novelty Score -0.363*** -0.270*** 692.7*** 515.2***
(0.0208) (0.0221) (117.3) (149.5)

Observations 9,451 9,384 551 490
R-squared 0.103 0.186 0.195 0.379
Drug Cohort Year-Qtr FE YES YES YES YES
Lead Indication FE YES YES

Robust standard errors in parentheses
*** pă0.01, ** pă0.05, * pă0.1

Notes: Columns 1 and 2 show the relationship between drug novelty and the firm’s development decision, as defined
by the drug entering Phase 1 clinical trials. The sample in Columns 1 and 2 consists of all drugs that are observed
in Cortellis data for US pre-clinical development. In Panel B, we present binned scatterplots of the relation between
novelty and average annual direct revenues, for the subset of drugs that are approved in the US. All specifications
include drug development cohort fixed effects, and Columns 2 and 4 additionally include fixed effects for the lead
indication (first disease ICD-9 for which the drug was developed).
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Table 7: Drug Novelty: Progression by Phase—excluding successors of launched
drugs

(1) (2) (3) (4) (5) (6)
VARIABLES Phase 1–2 Phase 1–2 Phase 2–3 Phase 2–3 P3–Launched P3–Launched

Novelty Score -0.116*** -0.0679 -0.154*** -0.120** -0.0749 -0.0869
(0.0412) (0.0449) (0.0541) (0.0584) (0.0870) (0.0970)

Observations 3,094 3,028 2,219 2,150 929 866
R-squared 0.117 0.190 0.119 0.229 0.201 0.385
Drug Cohort Year-Qtr FE YES YES YES YES YES YES
Lead Indication FE YES YES YES

Robust standard errors in parentheses
*** pă0.01, ** pă0.05, * pă0.1

Notes: Table 7 presents the relationship between a drug candidate’s novelty and its probability of progressing
through clinical trials (Phase 1 to Phase 2; Phase 2 to Phase 3; Phase 3 to approval). The sample consists of all drug
candidates that enter Phase 1 development in the United States, excluding incremental drugs that are associated
with approved prior drugs. All regressions include drug year-quarter of development fixed effects. Columns 2, 4, and
6 additionally include fixed effects for the first indication (ICD-9) for which the drug entered development.
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Table 8: Development Thresholds by Novelty—excluding successors of launched
drugs

(1) (2) (3) (4)
Entered Entered Revenue Revenue

VARIABLES Phase 1 Phase 1 if Approved if Approved

Novelty Score -0.335*** -0.237*** 709.8*** 231.9
(0.0304) (0.0315) (245.4) (375.8)

Observations 8,070 7,998 360 293
R-squared 0.084 0.172 0.199 0.469
Drug Cohort Year-Qtr FE YES YES YES YES
Lead Indication FE YES YES

Robust standard errors in parentheses
*** pă0.01, ** pă0.05, * pă0.1

Notes: Appendix Table 8 is analogous to Table 6, but excluding outcomes for incremental drugs associated with
successfully marketed predecessors. Columns 1 and 2 show the relationship between drug novelty and the firm’s
development decision, as defined by the drug entering Phase 1 clinical trials. In Panel B, we present binned scatterplots
of the relation between novelty and average annual direct revenues, for the subset of drugs that are approved in the
US. All specifications include drug development cohort fixed effects, and Columns 2 and 4 additionally include fixed
effects for the lead indication (first disease ICD-9 for which the drug was developed).

56



APPENDIX

57



A Additional details on model

A.1 Decomposition of firm’s expected profits in Expression (6)

Consider a drug (in the first or second period) that has been revealed to have revenue R̃ (R or

Rj), and for which the firm believes that the probability of success (S or Sj) is π̃. Let the direct

payoff within that period from making the initial development decision D̃1 (D1 or D1
j ), gross of the

development cost C1, be given by V pR̃, π̃q.

If there are M “ 1 development phases, then the firm makes no further decisions about whether

to develop the drug before the success or failure is revealed. In this case, V pR̃, π̃q “ π̃R̃.

If there are M ě 2 development phases, then the firm makes additional decisions of whether to

proceed. In particular, the firm optimally proceeds with the next round of development, choosing

D̃2 (D2 or D2
j ) equal to 1 after observing signal σ̃1 (σ1 or σ1

j ) equal to g, if and only if it plans

on proceeding with every other development phase conditional on continued positive signals g. So

there is essentially only a single decision to make, over D̃2 conditional on σ̃1 “ g. We can therefore

write V (for M “ 1 or M ě 2) as

V pR̃, π̃q ” max
D̃2Pt0,1u

D̃2 ¨

˜

π̃pR̃ ´

M´1
ÿ

t“1

Ct`1q ´ p1 ´ π̃q

M´1
ÿ

t“1

˜

t
ź

s“1

p1 ´ qtq

¸

Ct`1

¸

. (14)

Lemma A.1. V satisfies the following properties.

1. For any π̃ P p0, 1q and R̃ ě 0, it holds that V pR̃, π̃q ď R̃.

2. For any π̃ P p0, 1q and R̃ ě 0, it holds that V pR̃, π̃q ą C1 if R̃ ą
řM

t“1C
t{π̃.

3. For any π̃ P p0, 1q, it holds that V pR̃, π̃q is weakly increasing in R̃, with V pR̃, π̃q strictly

increasing in R̃ if V pR̃, π̃q ą 0.

4. For any R̃ P p0, 1q, it holds that V pR̃, π̃q is convex and weakly increasing in π̃, with V pR̃, π̃q

strictly increasing in π̃ if V pR̃, π̃q ą 0.

Proof of Lemma A.1. When M “ 1 and V N
1 “ πNR, all of these properties are immediate. So,

suppose that M ě 2, in which V N
1 is given by (14). We now show the desired properties.

1. Immediate from (14).

2. V N
1 is bounded below by the expression in (14) with the max over D̃2 replaced by D̃2 “ 1.

The expression with D̃2 “ 1 is in turn bounded below by π̃R ´
řM´1

t“1 Ct`1.

3. The maximand of (14) is weakly increasing in R̃ for each D̃2, and is strictly increasing if

D̃2 “ 1. Moreover, if V pR̃, π̃q ą 0, it must be that the expression is maximized by D2 “ 1.
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4. The maximand of (14) is constant in π̃ if D̃2 “ 0. If this expression is maximized by D̃2 “ 1,

then it must be that R̃ ´
řM´1

t“1 Ct`1 ą 0, in which case the expression is strictly increasing,

and linear, in π̃. The maximized expression is convex because it is a maximum over a constant

function and a linear function.

We next observe that V pR̃, π̃q can be used to derive the terms in decomposition (6) of V N
1 pRq,

WN
2 , and ∆N“1

2 .

For the decision in period 1, let πN
1 be the belief on success at the time the firm faces the

initial development choice D1. We have that πN“1
1 “ π and πN“0

1 “ π{pπ ` p1 ´ πqp1 ´ q0qq, with

πN“0
1 ą πN“1

1 . With this notation, we can now write

V N
1 pRq “ V pR, πN

1 q. (15)

Note that part 1 of Lemma A.1 implies that, for each N , there are values of R in the support

of FR for which V N
1 ă C1. Part 2 implies that, for each N , there are values of R in the support of

FR for which V N
1 ą C1. Part 4 confirms the claim in the body of the paper that V N

1 pRq is higher

for N “ 0 (recalling that πN“0
1 ą πN“1

1 ).

Continuing on, we have WN“0
2 “ 0, as the second-period payoff conditional on N “ 0 was

normalized to 0. The term WN“1
2 then gives the expected discounted second-period payoff for

N “ 1 when D1 “ 0:

WN“1
2 “ µQαER̃„F2R

maxtV pR̃, π2q ´ C1, 0u (16)

Finally, to determine the payoff for N “ 1 when D1 “ 1, observe that for each successor drug

that arrives, the initial signal takes the probability of success from π2 to either π̃ “ 0 with probability

p1 ´ π2qq0, or π̃ “ π2{pπ2 ` p1 ´ π2qp1 ´ q0qq ą π2 with probability pπ2 ` p1 ´ π2qp1 ´ q0qq. In the

former case, the payoff for that successor drug will be 0; in the latter case, it may be positive. So

the expected payoff at the second period when N “ 1 and D1 “ 1 is

βµQαpπ2 ` p1 ´ π2qp1 ´ q0qqER̃„F2R
maxtV pR̃, π2{pπ2 ` p1 ´ π2qp1 ´ q0qqq ´ C1, 0u. (17)

Hence, ∆N“1
2 is equal to expression (17) minus WN“1

2 , all divided by coefficient βµQα. We have

that ∆N“1
2 is positive because better information – a mean-preserving spread of the belief π̃ –

improves decisionmaking; this can be seen in the convexity of V pR̃, π̃q in π from Lemma A.1 part

4. The payoff is strictly positive because F2R has large enough support that V pR̃, π2{pπ2 ` p1 ´

π2qp1 ´ q0qqq is above C1 with positive probability, and therefore the expectation of the maximand

in (17) is positive; and because, for each R̃, it holds that V pR̃, 0q “ 0 ă C1. Those facts imply that

ER̃„F2R
maxtV pR̃, π̃q ´C1, 0u is convex and is not linear over π̃ P r0, π2{pπ2 ` p1´ π2qp1´ q0qqs, so

the mean-preserving spread of beliefs from an interior point π2 to these edges has strictly positive

value.
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A.2 The firm’s strategy in period 1

The following result confirms that – thanks to Assumption 1 – the firm’s optimal strategy in the

first period is as described in the body of the paper: on the equilibrium path, once development has

begun, the firm proceeds with development when it sees a positive signal. By the equilibrium path,

we mean at histories that the firm reaches with positive probability (conditioning on N and R)

given its strategy. Note that this lemma is only relevant if M ą 1, since there are no development

choices at t ě 1 if M “ 1.

Lemma:. Fix some revenue R and novelty N . If the firm enters development phase t P t1, ...,M´1u

on path during the first period, then the firm optimally chooses Dt`1 “ 1 if and only if σt “ g.

Given this lemma, we can summarize the firm’s strategy in the first period through the single

number of a revenue cutoff, RN , at each novelty value N . When revenue R is weakly above the

cutoff, the firm develops the drug conditional on pre-clinical testing (D1 “ 1); when R is below the

cutoff, the firm does not.

Proof of Lemma A.2. Fix N and R, and some t P t1, ...,M ´ 1u that the firm may reach on path.

If σt “ b, it is clear that the firm optimally chooses Dt`1 “ 0: there is a positive cost Ct`1 of

proceeding with the drug development, and no possible benefit.

Let us now show that the firm does proceed when σt “ g. First note that the firm has no benefit

from mixing; there will always be a pure strategy that is optimal. So, we restrict attention to pure

strategies. We now show the result by contradiction. Suppose that, after arriving to this history

on the equilibrium path, the firm chooses Dt`1 “ 0 even if σt “ g. That means that the firm never

successfully develops a drug with this realization of N and R, as the firm also chooses Dt`1 “ 0

when σt “ b. Hence, the cost of choosing D1 “ 1 is equal to C1 ą 0, and the lifetime benefit is at

most equal to second-period benefit from development of NβµQα∆
N
2 (the benefit can be less than

this value if the firm pays additional development costs in periods prior to t). That is, if N “ 0,

then the benefit is zero, and if N “ 1, the benefit is βµQα∆
N
2 . Applying Assumption 1, the benefit

is less than the cost even if N “ 1, and so the firm chooses D1 “ 0. Therefore this history is in fact

not on path, yielding the desired contradiction.

A.3 Proofs

Proof of Proposition 3.1. Recall that the prior probability of S “ 1 is π, regardless of drug novelty;

the probability of σt “ g conditional on S “ 1 is 1; and the probability of σt “ g conditional on

S “ 0 is 1 ´ qt.
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For novel drugs (N “ 1), Bayes’ Rule tells us that the probability of S “ 1 given the arrival at

development phase t (supposing that the firm follows a strategy consistent with Lemma A.2) is

PrpS “ 1|Dt “ 1, N “ 1q
π

π ` p1 ´ πq
śt´1

s“1p1 ´ qtq
(18)

For incremental drugs (N “ 0), there is an additional signal σ0, and so the corresponding

probability of S “ 1 given the arrival at development phase t is

PrpS “ 1|Dt “ 1, N “ 0q “
π

π ` p1 ´ πq
śt´1

s“0p1 ´ qtq
. (19)

We can see that PrpS “ 1|Dt “ 1, Nq is larger for N “ 0 than N “ 1. Plugging in t “ M

implies the second statement of the Proposition.

Furthermore, under the strategy described by Lemma A.2, the probability of proceeding to

development phase t ` 1 when t ă M – that is, PrpDt`1 “ 1|Dt “ 1, Nq – is the probability that

σt “ g:

PrpDt`1 “ 1|Dt “ 1, Nq “ PrpS “ 1|Dt “ 1, Nq ` p1 ´ PrpS “ 1|Dt “ 1, Nqqp1 ´ qtq. (20)

This expression is increasing in PrpS “ 1|Dt “ 1, Nq, implying the first statement of the proposition.

Proof of Proposition 3.2. The likelihood of developing a drug of type N conditional on entering

pre-clinical testing is PrpD1 “ 1|P “ 1, Y q “ 1 ´ FRpR
N

q, which is weakly decreasing in RN . The

revenue conditional on successful development for a drug of type N is ER„FR
rR|R ě R

N
s, which is

weakly increasing in R
N .

Proof of Proposition 3.3. In equilibrium, a drug of type N is developed conditional on entering

pre-clinical testing if and only if R ě R
N ; this probability weakly decreases in R

N . Moreover, the

distribution of revenues conditional on success is the truncation of R „ FR to values for which

R ě R
N ; the expectation ER„FR

rR|R ě R
N

s is weakly increasing in R
N . So, for both parts of the

Proposition, the results on probability of development conditional on entering pre-clinical testing

and on expected revenue conditional on successful development will follow from the comparative

static on R
N .22

Recall the decomposition (6) of the firm’s expected profit as a function of the choice D1, where

the three parameters do not appear in V N
1 pRq or ∆N“1

2 . The threshold R
N is the value of R at

22If RN is above or below the support of the distribution, or is in a “hole” in the distribution, then the comparative
statics on this probability and expected revenue hold weakly rather than strictly.
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which the expression (6) is constant over D1 P t0, 1u. Hence, RN is defined by

V N
1 pR

N
q ´ C1 ` NβµQα ¨ ∆N“1

2 “ 0. (21)

Moreover, recall that for each N , it holds that V N
1 pRq is continuous, and is strictly increasing in R

when V N
1 pRq ą 0; V N

1 p0q “ 0; the range of V N
1 pRq given R „ FR extends to strictly above C1; and

∆N“1
2 ą 0. Assumption 1 further states that C1 ` NβµQα ¨ ∆N“1

2 ă 0. So for each N , there exists

a unique R
N

ą 0 satisfying the above equation.

1. For N “ 0, Equation (21) is independent of β, µQ, and α, and thus there is a unique solution

in R`` that is independent of these parameters.

2. For N “ 1, the equation (21) depends on β, µQ, and α only through the product βµQα.

Because the LHS is strictly increasing in βµQα, it holds that R
N must strictly decrease in

this term in order to maintain (21).
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Figure 3: Successor Revenues, by Novelty (w/Firm Fixed Effects)

A. Successor Attempts B. Successor Revenue
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Notes: Figure A.1 presents binned scatterplots of the relationship between a drug candidate’s novelty and measures
of successor activity and revenues, at the individual drug level. All specifications include controls for a focal drug’s
quarter of development, lead disease indication, and developer firm fixed effects. The sample includes drugs that
enter clinical development in the United States.
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Figure A.2: Successor Revenues, by Novelty, Partial Credit Approach

A. Successor Attempts B. Successor Revenue
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Notes: Figure A.2 replicates Figure 3, but using a partial credit attribution method. This approach gives partial
credit to highly similar (Tanimoto score ą 0.75) predecessors, with greater partial credit going to earlier predecessors.
Panel C is the same as in Figure 3 because it graphs direct revenue and does not depend on successor credit allocation.
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Figure A.3: Distribution of Expected Successors
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Notes: Appendix Figure A.3 shows the distribution of our measured of expected successors (µQ). We estimate
µQ for all drugs entering clinical development by first regressing the number of total observed successors (for which
the focal drug was the earliest novel predecessor) on the the development entry order for the associated biological
target, and fixed effects for the disease market (ICD-9 code) and phase 1 entry year. We use three variables to
capture entry order, each of which is the earliest development entry order for a different “level" of the Cortellis
Investigational Drugs target ontology. For example, the drug losartan was first developed for high blood pressure.
Losartan biological mechanism of action is blocking the angiotensin II type 1 receptor. The Cortellis targets ontology
represents that target on a pathway “tree," where each branch represents increasing granularity of classification. Here,
the code would be PTG-REC-GPR-00A-PEP-ANG-002-ANT-001, representing that the target is a protein, receptor,
g-protein coupled receptor, Class A, activated by a peptide, of the angiotensin II family, and type 1 (since there are
two types of angiotensin II receptors). We use entry order into the 5th, 6th and 7th levels of the ontology in our
estimation. Losartan was the first angiotensin and angiotensin II targeting drug in our development data (6th and
7th level), but the 22nd g-protein coupled receptor class A peptide-activated targeting drug in our data (5th level)—
suggesting that the specific mechanism of action was novel, but the general class of targets was likely established as
a fruitful area for drug development. We convert entry order for each level into deciles, and use indicator variables
for each decile and level in our prediction regression.
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Figure A.4: Novelty and Revenue, by Alternative Expected Successors Measures

A. Partial credit (exponential decay by entry order)
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B. Full credit (for all predecessor drugs)
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Notes: Figure A.4 recreates Figure 8 with alternatives measures of expected successors. Panel A assigns credit for
successors decreasing exponentially based on how many chemically similar drugs (to the successor) entered prior to
the focal drug. Panel B gives full credit to each focal drug for all successors, regardless of whether prior drugs were
chemically similar.
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